

    
      
          
            
  
Welcome to OpenHatch’s Documentation

OpenHatch [http://openhatch.org/] values open communication. We believe
documentation is an important part of a welcoming community. If you would
like to see some of the projects that we are currently working on, please
visit the OpenHatch website <http://openhatch.org>.

Trying to get your bearings with our documentation?  Take a look at the
Project Overview or Contact Us to ask
questions. We also have a wiki [https://openhatch.org/wiki/Main_Page]
with a lot of informal documentation and other useful things on it.

Confused or dismayed by our documentation?  Please let us know so we can
improve it!  Make an issue on our
issue tracker [https://github.com/openhatch/oh-mainline/issues]
or Contact Us via email or IRC to chat with us about it. We
take our documentation seriously and wish it to be helpful to you.


Contents



	Contributor’s Guide

	Technical Guide to Development and Documentation

	Operations Guide

	Tutorials

	Community Guide






Contributor’s Guide

The Contributor’s Guide provides an introduction to contributing to the
OpenHatch project.


Contributor's Guide


	Project Overview

	Key Features of openhatch.org

	Getting Started

	Installation

	Testing Basics

	Documentation Basics

	How we handle contributions








Technical Guide to Development and Documentation

The Technical Guide provides information to contributors interested in
developing software or writing documentation for OpenHatch projects.


Technical Guide


	Documentation Style Guide

	Layout of OpenHatch’s source code

	Advanced installation

	Working with git

	Advanced testing

	Deployment

	Deploying to Heroku

	Maintenance tasks

	Adding a new bug tracker via git

	Developer Notes








Operations Guide

The Operations Guide gives an overview of the infrastructure and processes
that keep the OpenHatch website running efficiently.


Operations Guide


	Monitoring

	Continuous Integration

	Backups of the live site

	Emergency operations for the OpenHatch server

	WordPress theming

	Front-end style guide

	Web API

	Checking Coding Style Errors in Pull Requests with lint-review

	Issue tracking using GitHub Issues








Tutorials

We encourage our contributors to write tutorials and share their process
knowledge with other contributors. The tutorials are intended to be focused
‘how to’ documents.


Tutorials


	Writing Training Missions

	Adding a new bug tracker








Community Guide

Many people help OpenHatch serve newcomers to open source. The
Community Guide helps explain our teams, individuals, and activities
that support our goal of being a welcoming and helpful community.


Community Guide


	About the OpenHatch community

	Contact Us

	Login Team

	Login Team Agreement

	Web Analytics Team

	Domain Team

	Collaboration tools

	Quotes database

	Ticket tracking

	How to run an OpenHatch sprint

	THANKS










Indices and tables


	Index


	Search Page










          

      

      

    

  

    
      
          
            
  
Contributor’s Guide

Confused?  Contact us [http://openhatch.readthedocs.org/en/latest/community/contact.html].



	Project Overview

	Key Features of openhatch.org
	List of features





	Getting Started
	First steps

	Next steps

	Getting unstuck





	Installation
	Overview

	Essentials

	Output Samples





	Testing Basics
	Running the OpenHatch test suite

	Additional testing information





	Documentation Basics
	Source files

	reStructuredText and Sphinx

	Style

	Changing or Adding Documentation





	How we handle contributions
	As a contributor

	As a reviewer













          

      

      

    

  

    
      
          
            
  
Project Overview

OpenHatch is an effort to help people get involved in free, open source software communities.

Our main website, openhatch.org [http://openhatch.org], contains tools to find open source projects you can join, interactive lessons (“missions”) to learn the skills needed to get involved, and a place to say what projects you work on or want to help.

We keep the code that runs the website on Github in the repository oh-mainline [https://github.com/openhatch/oh-mainline].  The documentation
can be found at readthedocs.org [http://openhatch.readthedocs.org/].

The website is a Python+Django app with jQuery and CSS and HTML on the frontend, and aims for high test coverage (mostly succeeding) and high usability (though it is not there yet).  You can read more details about how the code is structured in this document [https://github.com/openhatch/oh-mainline/blob/master/LAYOUT], which we’re working to improve.

The best way to contact us about the website is to send an email to our contributors list [http://lists.openhatch.org/mailman/listinfo/devel] or find us at #openhatch on irc.freenode.net.  (Other ways to contact us [http://openhatch.readthedocs.org/en/latest/community/contact.html].)

Other elements of the OpenHatch project:


	The website is also powered by the “OpenHatch bugimporters,” a separate Python-based codebase to download bugs from open source projects’ bug trackers, based on Scrapy.


	code: https://github.com/openhatch/oh-bugimporters


	docs: http://oh-bugimporters.readthedocs.org/


	main contact: http://lists.openhatch.org/mailman/listinfo/devel or #openhatch on irc.freenode.net






	The OpenHatch blog, a WordPress-based site where the community writes about great things going on in outreach and diversity


	view it: http://openhatch.org/blog/


	read about its theming: http://openhatch.readthedocs.org/en/latest/internals/wordpress.html


	main contact: http://lists.openhatch.org/mailman/listinfo/publicity






	The OpenHatch wiki, where we store notes about events, future and past tech plans, and other general useful bits of text.


	view it: https://openhatch.org/wiki/


	read about its theming: FIXME, undocumented mostly


	main contact: http://lists.openhatch.org/mailman/listinfo/publicity or #openhatch on irc.freenode.net






	Open Source Comes to Campus, a series of in-person outreach workshops, especially with Women in CS groups, to help university and college students get involved in free software


	info: http://campus.openhatch.org/


	main contact: hello@openhatch.org


	planning list: http://lists.openhatch.org/mailman/listinfo/osctc-planning






	Outreach events such as the Boston Python Workshop for women and their friends that are “affiliated” with us.


	General info: https://openhatch.org/wiki/Events/Affiliated


	main contact: http://lists.openhatch.org/mailman/listinfo/events






	We host email lists for other groups working on efforts also aligned with our goals of diversity and outreach.


	Big list of email lists: http://lists.openhatch.org/mailman/listinfo


	Sample lists you’ll find here: Women in Free Software India; Organizers of Columbia University Open Source Comes to Campus; etc.






	General thinking about how free software can be improved:


	For everyone: http://lists.openhatch.org/mailman/listinfo/peers


	Specific planning for the OpenHatch Board: http://lists.openhatch.org/mailman/listinfo/board and for 2014 fundraising http://lists.openhatch.org/mailman/listinfo/fundraising-2014








Projects that are sort of being “incubated” by OpenHatch, in that they’re not fully ready yet, but are promising and exciting:


	Oppia-based rewrite of the training missions:

	
	more about Oppia: https://code.google.com/p/oppia/


	code: https://github.com/openhatch/oh-missions-oppia-beta


	main contact: Tarashish (sunu) on http://lists.openhatch.org/devel or #openhatch on irc.freenode.net






	“Greenhouse,” a project to help open source projects greet new contributors:

	
	code: https://github.com/openhatch/oh-greenhouse


	main contact: Dave (daveeloo) on http://lists.openhatch.org/devel or #openhatch on irc.freenode.net


	Other lists used by the project: http://lists.openhatch.org/mailman/listinfo/greenhouse and http://lists.alioth.debian.org/mailman/listinfo/welcome-team












          

      

      

    

  

    
      
          
            
  
Key Features of openhatch.org

This document lists features that the openhatch.org site is supposed
to have. These are the guiding priorities for the maintenance and
development community.

The “List of features” section below is supposed to state high-level
goals that site visitors should expect to achieve when using the
website.

To the extent that our work together on the OpenHatch codebase
provides value to the world, I think it makes sense to think about
what users can expect from OpenHatch.


List of features


OpenHatch Friends and Fans

As a general fan of OpenHatch, I want to learn more about OpenHatch’s activities and the organization (including how to get in touch, and how to get involved) by visiting the front page of the website.




Site visitors

As a site visitor, I want to be reassured that people actually use the site.




Open Source Contributor

As a prospective open source contributor, I want to visit the
OpenHatch site and be able to find ways to get involved in open
source.


Note

Implementation detail: Right now we focus on helping
people find “bitesize” bugs in open source projects.

We’ve gotten feedback that “bitesize bugs” are OK, but that we could do a better job of contextualizing the bugs as being within a particular project, and that many visitors are motivated by the open source project they’d contribute to first, and the task they’d do second.



As a prospective open source contributor, I want to visit the OpenHatch website and learn skills related to getting involved in open source.


Note

We achieve this via the training missions.



As an open source contributor, I want to visit the OpenHatch site and make a profile listing the projects I’ve contributed to.




Open Source Project Maintainers

As an open source project maintainer, I want to visit the OpenHatch
site and be able to configure my project to show up in collection of
bitesize bugs one can browse.

As an open source project maintainer, I want to provide a friendly
face for my project on the OpenHatch site, so that prospective
contributors feel welcomed into the project and reach out to me as
needed to become contributors.









          

      

      

    

  

    
      
          
            
  
Getting Started

To get your own instance of OpenHatch running, follow these steps and then get
in touch with us.

The code is written in Python. It uses the Django toolkit and tries to stick to
good software testing practices. If you have Python experience, you should be
able to get hacking pretty quickly even if you don’t know Django or testing.


First steps


Getting the source code

OpenHatch source code can be seen through a web interface at
https://github.com/openhatch/oh-mainline

To make contributions, you will need to do acquire the source code of www.openhatch.org. Complete these one-time tasks in the following
order:



	Make a new Github account on https://www.github.com if you don’t already have one.


	Fork the oh-mainline Github repository located here at https://github.com/openhatch/oh-mainline. Click on the fork button located on the upper  right corner of the project page. Now you have your own personal copy of the oh-mainline repository.


	Install git the version control system. If you have already done so, skip to the next step.


	Clone your personal copy of the oh-mainline repository to your computer by typing this command into your terminal

$ git clone https://github.com/<YOUR_GITHUB_USERNAME>/oh-mainline.git












It will take up to five minutes, depending on your Internet connection. it’s
kind of a big repository. (90 megabytes, or so.)




Installing and running a local development site

Once you have the repository, read the Installation documentation
or open up the oh-mainline/docs/getting_started/installation.rst file
in any text editor and follow the instructions.

Read it, and follow the few short steps to getting your local site going. It
should take about 5 minutes.






Next steps


Get in touch

We really recommend that you get in touch with us. (It’s not quite mandatory,
but we’ll all be happier if you do)



	Join the Devel mailing list [http://lists.openhatch.org/mailman/listinfo/devel] and say hello.


	Visit the #openhatch IRC channel in freenode.







OpenHatch holds development meetings on IRC; our goal is to hold these meetings weekly. The meetings are announced on devel@lists.openhatch.org. Please join us on IRC and share your ideas or ask questions.




Read more documentation

Before you start hacking OpenHatch, we strongly advise you to watch
Learning new codebase [http://pyvideo.org/video/40/djangocon-2010--learning-a-new-codebase] talk by Justin Lilly given during DjangoCon 2010 [http://pyvideo.org/category/23/djangocon-2012].

You can find more tips about hacking OpenHatch in the Category:Hacking_OpenHatch!

You can find things to work on by browsing our issue tracker [https://github.com/openhatch/oh-mainline/issues] or asking us!




Start contributing!

We mark issues that are particularly good for new contributors with the
“bitesize” keyword on our issue tracker. You can find the open easy issues here [https://github.com/openhatch/oh-mainline/issues?q=is%3Aopen+is%3Aissue+label%3Abitesize].

If you find an issue you like and it isn’t assigned to anyone, assign it to
yourself and start hacking. If it is assigned to someone already, but it looks like they
haven’t gotten around to working on it, leave a note on the ticket saying that
you are interested in taking it (you can also try asking on IRC).

When you are ready to submit a contribution for an issue, follow the guidelines at
How we handle contributions.

If you ever feel like you are getting stuck or could use some design feedback,
don’t hesitate to ask for help on the IRC channel, on the devel mailing list,
or on the issue ticket. Attending the weekly development meetings on IRC is a
great time to ask for help or recommendations on issues to work on.






Getting unstuck


Doing searches:

When doing searches for particular keywords in the GitHub repository, the “vendor” directory will most likely return lots of hits, making your search more difficult.

GitHub provides a little known method for excluding specific directories from the search. In the Search textfield, enter:


YOUR_SEARCH_WORD -path:vendor








The -path:vendor parameter will exclude the vendor directory from your search and will maximize the probability of getting meaningful hits.

It is also possible to do a search locally from the command line, by going to the mysite/ directory and using:


git grep YOUR_SEARCH_WORD








That will limit the search to your local code.









          

      

      

    

  

    
      
          
            
  
Installation

OpenHatch is currently designed to run on Python versions 2.6.0 to 2.7.8.
OpenHatch site does not currently support Python 3 or above. We hope to do
so in the future.


Note

These installation instructions are tested nightly on Ubuntu 12.04
and Debian stable. Last verified on Windows XP 11/7/2013,
Mac OS X 10.9.5 October 29, 2014, and Mac OS X 10.10 December 15, 2014.




Overview

This repository contains (primarily) Python code written on top of Django
and other Python modules. We bundle a copy of all of the essential
dependencies for oh-mainline to run so that you can get started immediately
(there is no need to download and configure additional software from other
sources).

It should take you about 15 minutes to get the OpenHatch site running locally
on your computer.

Here are the basic steps you’ll follow for installation:


	Open a command prompt


	Get the code from the GitHub repository


	Set up the database


	Run the site




After running your own instance of the OpenHatch website, you can play
with the code from an interactive shell on your computer.

If you want to work on core backend features, like the bug importer,
or let your local site rescale images, please see Advanced Installation
documentation to learn about optional dependencies and automated testing.




Essentials


Open up a command prompt


Note

Understanding how to open a command prompt for your operating
system is an important prerequisite to master before continuing
with the remaining installation instructions.



For the rest of these instructions, you have to open a command prompt:


	On a Linux or similar system, find a program with “terminal” or
“konsole” in the name. Run it.


	On a Mac, click the search icon in the top-right of the screen and
search for Terminal. This should find the Terminal program, stored in
/Applications/Utilities. Run it.


	On a Windows computer, you’ll need to use Git Bash. To do so, download and
install the .exe at this link [http://openhatch.org/missions/windows-setup/].
(It will ask you a bunch of questions.  You can accept the defaults.)
Once that is installed, launch Git Bash by going to:
Start -> All Programs -> Git -> Git Bash







Get the code from the GitHub repository

If you already have an oh-mainline directory on your computer, then
you already have the source code. You may skip to the next step,
Set up the database.

If you’re reading this installation instruction file on the web,
then you will need to clone the repository from GitHub to your local
computer.

Step 1: Open a command prompt on your computer

Step 2: Create a new directory on your computer:

mkdir localhatch





Step 3: Change to the new directory:

cd localhatch





Step 4: On your personal Github account, fork the OpenHatch repository at
https://github.com/openhatch by clicking on the “Fork” button on the right-hand side.
Github now takes you to your forked repository of the OpenHatch upstream repository.

Step 5: On the command prompt, clone the repository from your fork of the GitHub OpenHatch code to your local computer:

git clone https://github.com/<YOUR_GITHUB_USERNAME>/oh-mainline.git





If your commands are executed successfully, you may continue to the next
step.


Note

For most Django projects, you would need to install the dependencies
at this point (using pip install -r requirements.txt), but for
the OpenHatch project, these packages have been bundled for your
convenience in the vendor directory, so they don’t need to be
installed separately.






Set up the database

Before you run the commands in the this section, make sure you have
changed your present working directory to the oh-mainline directory.:

cd oh-mainline





Your local OpenHatch site will store data in a SQLite database.

Run this command to create the database and add tables for our dependencies:

python manage.py syncdb --migrate --noinput






Note

We have to pass –noinput to request that Django not ask you
questions. This is due to a bad interaction between Django’s superuser
creation system and our custom profiles. –migrate creates an empty
database, with zero users and zero projects, ready for you to fill with data
as you use your local version of the site. If you want your site to have a database filled
with data like what is on the main OpenHatch.org site, you can import
a data snapshot. See Importing data snapshots for more info about
that.)



This will print out lots of text. Once all of the text is printed, you
should see something like the output listed in Output Samples below.
Afterwards, your database tables should be ready. You’re ready to run the
site.

If you are using Windows and do not have Python installed, you may get the
error “Python: command not found.”  Follow these instructions [https://openhatch.org/wiki/Boston_Python_Workshop_8/Friday/Windows_set_up_Python]
to install Python.




Run the site

Before you run the commands in the this section, make sure you have
changed your present working directory to the oh-mainline directory.

Run this command which will start a web server locally on your computer:

python manage.py runserver





As long as the “runserver” is running, you can visit your local version of
the OpenHatch site in a web browser. So, try surfing to:

http://localhost:8000/


Note

Your local version of OpenHatch does not contain any user data in
its SQLite database. You may add users manually through the user
interface. If your development needs require a large amount of
prepopulated data, you can find information about Importing data
snapshots in the Advanced Installation documentation.






You’re done

Hooray! That’s it for the essentials. You have everything you need to
get the site going, and to start making changes.

Now is a good time to find us on IRC or the email list and say hello!
We can help you make the changes you want to. Contact Us!

If you want to read about some optional dependencies, open up
Advanced Installation documentation. You can also read about how to
maintain your local site in the Maintenance documentation.






Output Samples

Here is a sample output from python manage.py syncdb --migrate --noinput:

Synced:
  > ghettoq
  > django.contrib.auth
  > django.contrib.contenttypes
  > django.contrib.sessions
  > django.contrib.sites
  > django.contrib.webdesign
  > django.contrib.admin
  > registration
  > django_authopenid
  > django_extensions
  > south
  > django_assets
  > invitation
  > voting
  > reversion
  > debug_toolbar
  > sessionprofile
  > model_utils
  > djkombu
Migrated:
  - mysite.search
  - mysite.profile
  - mysite.customs
  - mysite.account
  - mysite.base
  - mysite.project
  - mysite.missions











          

      

      

    

  

    
      
          
            
  
Testing Basics

OpenHatch strives to follow best practices for testing. One
common practice in the Python community is Test Driven Development (TDD).
In TDD, a developer will write a test for a new feature before creating
the feature’s source code.


Running the OpenHatch test suite

You may run the test suite to see if all tests pass before you begin
making changes to the code. To run the test suite,:

python manage.py test





The test suite begin running all of the tests and will display the test
progress in the console window.


Running the test suite without warnings

You may run the test suite and turn off warnings, such as “deprecation
warnings”, being output to your screen. To run the test suite without
warnings,:

python -Wignore manage.py test





The test suite will display its progress on the console but will not display
any warnings.




Running a subset of tests

If you are working on a particular area of the source code, you may find
it helpful to run a subset of the tests. You may pass an argument after
the python manage.py test command.

Currently, you may pass one or more of the following arguments: account,
base, missions, project, search, and customs. For example,:

python manage.py test missions





will run all the tests related to the OpenHatch missions.


Controlling detail of test output

You can use --verbosity or -v to specify the amount of notification and
debug information that should be printed to the console.


	0 means minimal output.


	1 means normal output (default).


	2 means verbose output.


	3 means very verbose output.




For example,:

python manage.py test -v2





will run all the tests and display a more verbose output.








Additional testing information

The Internals section of this documentation contains more detailed information
about the test suite, advanced testing, and continuous integration.

If you’d like to learn more about testing, we strongly recommend going through
Ned Batchelder’s [http://nedbatchelder.com/] blog post Getting Started Testing [http://nedbatchelder.com/text/test0.html].







          

      

      

    

  

    
      
          
            
  
Documentation Basics

You can read the most up to date documentation online at this link:
http://openhatch.readthedocs.org/en/latest/index.html


Source files

The documentation source files can be found in the
docs/ [https://github.com/openhatch/oh-mainline/tree/master/docs]
folder of the oh-mainline repository:
https://github.com/openhatch/oh-mainline/tree/master/docs




reStructuredText and Sphinx

The documentation for OpenHatch is built using Sphinx and deployed at
readthedocs. You can learn more about the Sphinx, which uses
reStructuredText (.rst files) format [http://docutils.sourceforge.net/rst.html],
and
Sphinx deploy commands [http://sphinx.readthedocs.org/en/latest/index.html].




Style

We encourage you to help improve the OpenHatch documentation. We have a
Documentation Style Guide which gives an overview of our basic
documentation style and guidelines.




Changing or Adding Documentation

Before making any changes, we recommend taking a moment to read the
Documentation Style Guide.


Making changes to documentation via pull request

To alter the documentation, you’ll want to clone the github repository [https://github.com/openhatch/oh-mainline].  (Not sure what cloning
is?  Read our version of Git Basics. [https://openhatch.org/wiki/Git_Basics])

Once you’ve got a local copy, you can edit the files in the docs/ [https://github.com/openhatch/oh-mainline/tree/master/docs] directory to make changes.  You may find the official Sphinx reStructuredText
primer [http://sphinx-doc.org/rest.html] useful for that.

To see the changes rendered locally, you can run the render_docs.py script found in the tools folder of the oh-mainline repository:

python tools/render_docs.py





You will find the documentation rendered into html format inside the docs/html folder of the oh-mainline repository.  You can view it in your
browser and check that you like your changes before submitting them.  (Again, see Git Basics [https://openhatch.org/wiki/Git_Basics] for
help submitting your changes.)

Once you submit your changes as a pull request and they have been merged by a maintainer, they will appear in the openhatch/oh-mainline repository.
The openhatch.readthedocs.org/ files will update automatically via a github web hook.


Note

If you’ve create a new file or edited/deleted a “toctree”, you may get an error “WARNING: document isn’t included in any toctree”.  This means
a file is not referenced by a table of contents anywhere.  Consider adding it to one.  See Sphinx guide [http://sphinx-doc.org/markup/toctree.html] or reference.)






Making changes to documentation via readthedocs/Github editor

If you’re having trouble navigating the documentation by opening and editing files locally, you can also try paging through the readthedocs.
Each page should have an ‘Edit on Github’ link in the righthand corner.  When you click this link, Github will automatically create a fork
of the project for you (if one does not automatically exist).  Once you finish editing, make sure to submit a pull request.









          

      

      

    

  

    
      
          
            
  
How we handle contributions

We use git/Github to handle contributions.  If you’re new to git, you may
appreciate this guide [https://openhatch.org/wiki/Git_Basics#Create_pull_request].


As a contributor


Creating a pull request


Get the latest version of master

Before creating a pull request, update the master branch of your local
repository with the latest version of the OpenHatch-owned repository. In
git, you can achieve this by developing on a branch [http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html#_managing_branches] and rebasing your
branch commits on top of master with git rebase master [http://www.kernel.org/pub/software/scm/git/docs/git-rebase.html]. You can also use
git rebase -i master for an interactive rebase, in which you can reorder
and edit commits. We prefer rebasing to merging because rebasing preserves
a linear commit history, which can be easier to keep track of and reason
about.




Test your changes



	Add unit tests with your functionality changes or additions.


	Use docstrings and comments where appropriate. Spell-check your
additions. Try to apply pep8 [http://pypi.python.org/pypi/pep8] standards.


	Test your changes on a local instance of the website. Prove to yourself
that your changes address the issue they are supposed to address.


	Run the test suite, and make sure your unit tests pass and all tests that
passed before your changes still pass.


	Use a tool like PyChecker [http://pypi.python.org/pypi/PyChecker/0.8.12] to check for bugs.










Generate a pull request

Generate a pull request by pushing your changes to your personal remote.
You can then create a pull request to the OpenHatch repository. In the commit
message, include the issue the pull request addresses. For example: “Closes:
http://openhatch.org/bugs/issue398”






Submitting a pull request



	Add a link to the pull request in the issue ticket at https://openhatch.org/bugs.


	Change the issue status to “need-review”.


	Join IRC and say that you have an issue ready for review.







The pull request will be checked for code style errors (such as pep8 [http://pypi.python.org/pypi/pep8] violations) by the lint-review bot. To know more about the bot, see Checking coding style errors in pull requests with lint-review.

If the reviewer says it’s ready to go, your request will get merged in short
order. If the reviewer has feedback he/she wants addressed, make the necessary
revisions and start back at the “Check/test your changes” section.




Permit us to share your work



	Join our Devel email list by entering your email address into the form at
http://lists.openhatch.org/mailman/listinfo/devel


	Send an email to devel@lists.openhatch.org with a message like:


The work I contribute to OpenHatch is work I have permission to share.
I permit anyone to re-use it under the terms of the Affero GPL,
version 3 or later. Additionally, contributions in the docs/ directory
can be shared under the terms of CC Zero 1.0.
















As a reviewer


Apply the pull request to your local repository

Find the URL of the pull request by going to the main pull request page on
Github and clicking on the link named ‘command line’.  Github will give you
instructions, including the URL of the pull request.  Follow all of the
instructions except the last one, which tells you to push back to the origin.




Review the pull request for correctness and cleanliness

Things to think about:



	Does the pull request make sense? Does it look readable?:

git log -p







	If the author hasn’t already done this: tell the author
“Please email devel@lists.openhatch.org saying that you’re okay with
your work being under the Affero GPL, version 3. If you’re willing, it
is preferable that you say ‘the Affero GPL, version 3 or later, at your
option’.”


	If you have revisions you’d like to see made, change the issue status to
“in-progress”, re-assign the issue to the pull request submitter if
it isn’t already, and leave your review feedback on the pull request.


	After leaving the revisions in the comments, you may optionally leave a
note to the author regarding expectations on when or if the pull request
will be worked on further. You may use the below example:

To add an arbitrary (but perhaps useful for planning) time
bounded-ness, is this addressing the above something you'd be
interested in doing over the next 3 days? If not, I can take care of
it after that. If you're interested in being the one to do so, but you
know you need more than 3 days is not long enough, that is fine; just
say so, and we're happy to wait for you to perfect these changes.















Push and deploy

If you want to deploy the changes, and you have push access to the repository, you
can do so by following the steps listed in the section labeled Deployment [http://openhatch.readthedocs.org/en/latest/advanced/deployment.html].

If you don’t have push access, you will need to rope someone else in for this. Anyone
in the Login team [http://openhatch.readthedocs.org/en/latest/community/login_team.html]
can do a push as well as deploy access. Asheesh Laroia (paulproteus) is the traditional
person to do this, but it’s good to ask someone else so they get practice!

Things to know:



	If you push to origin/master, Travis CI will test it.


	Once you’re happy, you can run the deploy script, but note that will push
the current HEAD to origin/master.

cd mysite
./scripts/deploy







	When you deploy, check a page or two to make sure things are okay.







For more details on how we use Continuous Integration and Travis CI, see
Continuous integration.









          

      

      

    

  

    
      
          
            
  
Technical Guide to Development and Documentation

If you’ve made it this far without saying hello [http://openhatch.readthedocs.org/en/latest/community/contact.html]
you should definitely do so!



	Documentation Style Guide

	Layout of OpenHatch’s source code
	Directory structure

	Informational Files

	dotfiles

	Other files and executable files





	Advanced installation
	Overriding local settings

	Automated testing

	Optional dependencies

	Maintenance





	Working with git
	Issues with Pull Requests

	Become a git Expert





	Advanced testing
	Tests: An overview

	General testing tips

	Details specific to OpenHatch

	About fixtures

	Mocking and patching

	Testing with Twill, versus the Django test client





	Deployment
	Prerequisites

	How the deploy script works

	Recommended way to use the deploy script

	Notes about the deployment

	Other sites we host





	Deploying to Heroku
	Overview

	Install the Heroku toolbelt and log in

	Create a Heroku app

	Set up the database

	Visit your app on the web

	Troubleshooting





	Maintenance tasks
	Importing data snapshots

	How to run the bug importer

	Run the hourly tasks related to profiles

	Adding jQuery UI components

	Editing the website’s CSS





	Adding a new bug tracker via git
	Clone the repository

	Overview of steps

	In a little more detail

	Submit a patch





	Developer Notes
	January 2015 Notes













          

      

      

    

  

    
      
          
            
  
Documentation Style Guide


Note

OpenHatch’s Documentation Style Guide is still a work in
process. We like Kenneth Reitz’s excellent Guide Style Guide [http://docs.python-guide.org/en/latest/notes/styleguide/]
for its concise and consistent style guidelines. We refer you
to this guide until ours is posted.







          

      

      

    

  

    
      
          
            
  
Layout of OpenHatch’s source code

This section should help developers get a better understanding of OpenHatch’s
oh-mainline repository.

This section is a basic overview. Additional details can be found in the
LAYOUT file in the root directory of oh-mainline.


Directory structure


	docs/

	This directory contains documentation files for OpenHatch and is
rendered at RTD ReadtheDocs <http://openhatch.readthedocs.org>.



	downloads/

	This directory may be used by deployment for temporary storage.

[FUTURE: It may be possible to remove this directory in a later
release.]



	htmlcov/

	This directory stores reports created by the coverage testing tool.



	mysite/

	This directory contains the OpenHatch website and all the “Django
apps” that are part of it. Each subdirectory is an app.

Each of the apps has some tests, views, and frequently models and forms.
Their file paths are:


/tests.py

/views.py

/forms.py

/models.py




You can read more about tests, views, forms, and models in the
official Django tutorial:


https://docs.djangoproject.com/en/1.5/intro/tutorial01/





	customs/

	This directory contains “import/export” code like the support for
loading and saving snapshots of the OpenHatch database, downloading
data from bug trackers, and scanning other websites for information
about OpenHatch members.



	profile/

	This app contains code on information about OpenHatch users.



	account/

	This app (mostly) contains code to let a user edit their information.



	missions/

	This is the Django app where the training missions live.



	search/

	This Django app contains the views and models necessary to display
the volunteer opportunity finder, also known as bug search.





The apps also use other Django features, or Django add-ons. Here is a
list by filename and a URL reference to further info:


	/templatetags.py

	https://docs.djangoproject.com/en/1.5/howto/custom-template-tags/



	/migrations/

	http://south.aeracode.org/



	/api.py

	http://django-tastypie.readthedocs.org/



	/fixtures.json

	https://docs.djangoproject.com/en/1.5/howto/initial-data/



	/management/commands

	https://docs.djangoproject.com/en/1.5/howto/custom-management-commands/



	/view_helpers.py

	http://lists.openhatch.org/pipermail/devel/2013-March/003151.html



	/templates/

	https://docs.djangoproject.com/en/1.5/topics/templates/







	tools/

	This directory contains helper tools that make things easier for a
contributor (for example, a script for rendering docs).



	vendor/

	This directory contains code from other projects that we rely on.
(For more information, look at
http://kitsune.readthedocs.org/en/latest/vendor.html .)








Informational Files

These informational files are found in the root directory of oh-mainline.


	README.rst

	Read the README! Read it first.

It points to our main documentation; this LAYOUT file is just a quick
thumbnail view of what different files in here are.

(Aside: The “.rst” extension indicates reStructuredText format is used.)



	LICENSE

	This file explains what permissions you have, if you want to re-use
source code you find in this repository.



	CREDITS

	This file gives credit for files used by OpenHatch.



	LAYOUT

	This file (the one that you are viewing now) gives an overview of the
project high-level directory and file structure.








dotfiles

In general, dotfiles provide configuration details.



	.coveragerc

	coverage testing configuration



	.gitattributes

	git



	.gitignore

	Files ignored by git



	.travis.yml

	Travis continuous integration configuration











Other files and executable files


	manage.py

	This is the well-known and widely-loved Django management script.



	Procfile

	A file used when deploying the site.



	requirements.txt

	This file indicates packages (i.e. ones that are not pure Python code
and contain compiled code) that are installed in a different manner than
packages found in the vendor directory.



	run_importer.sh

	This shell script is used for deployment and running of scraping of
projects for suitable bugs for contributors. [FUTURE: This file may
be relocated to a different place.]



	setup.py

	This file lists the dependencies of the OpenHatch codebase.











          

      

      

    

  

    
      
          
            
  
Advanced installation

This file contains information on things that you don’t have to do! If
you’re a completionist or really just like installing dependencies or
reading the OpenHatch documentation, keep reading.


Overriding local settings

If you wish to override the default settings, you may create a
separate file with individual settings you wish to change.
There is a hook at the end of the in mysite/settings.py that allows
contributors to override individual settings. To override settings,
create a new file in the mysite directory and name it local_settings.py .
You can place any settings you wish to override in this file.




Automated testing

The OpenHatch code comes with automated tests that you can run to make
sure that it is set up To execute all tests, run this command:

python manage.py test





For more about tests visit: http://openhatch.org/wiki/Automated_testing


Postfix, postmap and testing

The code for site creates a configuration file for an email service,
Craigslist-style, that lets all users have an anonymous inbound email
address that goes to them. In particular, the code configures a
Postfix-based alias map for this. When that alias map changes, we notify
Postfix by calling postmap.

If the postmap binary (/usr/sbin/postmap) is not available on the system,
it is better not to try running that binary during testing. So before
tests we check for presence of the postmap binary and log a warning if
it is not present on the system.






Optional dependencies

You will probably see some warnings when you run the site, providing
you information about extra dependencies.

These extra dependencies require compiled code, AKA Python C
extensions. Depending on your operating system, you might install
these using a GUI installer, the program “pip”, or a package manager
like apt-get.

For each dependency, we specify how to get it with pip or
apt-get. If you have a Debian or Ubuntu system, use the apt-get
instructions. Otherwise, try pip. (And if it doesn’t work, ask for
help quickly.)


Re-scaling images

When you add a profile photo, and at other times, the site attempts to
rescale the image to fit into the visual constraints of the
page. Django and the OpenHatch code work together with PIL (the Python
Imaging Library) to transform images.

PIL requires some C dependencies, so the site can function without
it. If you want image rescaling to work, you must install PIL.

To do that, run one of these commands:

$ sudo apt-get install python-imaging
$ pip install PIL








Bug import dependencies

If you want to modify the code that downloads bugs (AKA “volunteer
opportunities”) from other projects, you need these dependencies:

lxml: An XML and HTML parsing library

$ sudo apt-get install python-lxml
$ pip install lxml








Bug Importers

If you want to use the customs bug importers, they will need to be installed.
You can do this in one of the following ways:


	pip install https://github.com/openhatch/oh-bugimporters.git  # (readonly)


	Clone the repo into a folder at the same level as oh-mainline.







Training missions: System tools

Most of the training missions work fine without installing any extra
dependencies. There are two exceptions.

The Subversion training mission requires that you have the ‘svnadmin’
tool installed. To get it on Debian or Ubuntu, do:

$ sudo apt-get install subversion





Subversion repositories for the svn training missions are stored in
mysite/missions-userdata/svn. This directory must be available via
svnserve for users to be able to do the svn missions.  See
mysite/missions-userdata/svn/README to read how to set up svnserve.

On Windows and Mac, the code currently can’t find svnadmin.

The git training mission expects to find “git” on your system path. On
Debian/Ubuntu systems, do:

$ sudo apt-get install git-core










Maintenance

You may want to read about how to maintain an OpenHatch site. maintenance.rst tells
you about that.







          

      

      

    

  

    
      
          
            
  
Working with git


OpenHatch has a long history of helping contributors build existing and
learn new skills. This document section has information that OpenHatch
contributors have found useful when working with git. We encourage you to
share helpful git resources by adding your favorites to this file and
creating a pull request.









	Git Commands

	What it does





	git  clone <repo>

	Used to clone the repo git clone <repo> | <name>



	git commit

	Commit an applied change on the given branch



	git remote

	Track [https://help.github.com/articles/configuring-a-remote-for-a-fork/] a
remote branch



	git revert <commit-SHA-1>

	Revert [http://git-scm.com/docs/git-revert] changes in a commit



	git fetch <remote> <branch>

	The git fetch [https://www.atlassian.com/git/tutorials/syncing/git-fetch/] command
imports commits or tags [http://git-scm.com/book/en/v2/Git-Basics-Tagging]
from a remote repository into your local repo.



	git pull

	
Updates your repo. Shorthand for git fetch followed by git merge FETCH_HEAD

Recommended to use it with –rebase [http://gitolite.com/git-pull--rebase].






	git log

	
Lists commits made in the current branch of the repo.
Check this [https://coderwall.com/p/euwpig/a-better-git-log].

Hacks: git log --pretty=format:"<%h> [%an] %d%Creset %s"






	
	git rebase :

	
	git rebase <base>


	git rebase -i <base>


	git rebase -i HEAD~NUM


	git rebase -i bbc643cd^


	git rebase --abort


	git reflog









	
	Rebasing is the process of moving a branch
to a new base commit


	Interactive rebase [https://help.github.com/articles/using-git-rebase/]


	Modifying to a head [https://help.github.com/articles/about-git-rebase/]


	Modify to specified commit bbc643cd


	Abort a rebase


	Tracks the changesets to the tip of branch











Issues with Pull Requests


Helpful tips for new contributors


	Get into OpenHatch workflow [https://openhatch.org/wiki/OpenHatch_git_workflow] .


	
Understand your problem [https://sethrobertson.github.io/GitFixUm/fixup.html]
first.





	Learn to go to a certain commit.


	
Tip: Each commit has a hash value(SHA-1) which is fixed.
Switch [http://stackoverflow.com/questions/4940054/how-can-i-switch-my-git-repository-to-a-particular-commit]
to a commit.









	
If you need to modify a single commit as requested by the
maintainer in the pull request
revert the old commit with a new commit and push it
mentioning the changes you have made:




	
Tip: Please understand reset and revert [http://stackoverflow.com/questions/2530060/can-you-explain-what-git-reset-does-in-plain-english] .
The ideal solution is to revert previous commit [http://stackoverflow.com/questions/4114095/revert-to-a-previous-git-commit] ,
edit it and push it for changes that are not published or
force push it for changes that are published.
You can also undo [http://stackoverflow.com/questions/927358/undo-the-last-git-commit]
a commit and force push the changes made.





	
Note: Commits do not technically change when we force push
the commit, reset or modify them. But the hash gets updated, and the
new hashed commit gets tagged to that branch. You can easily find you
previous commit(s) on github too just by adding /commit/<branch>
to the repo address. It will show you the remote git log. See the
hash get changed after rewriting the commit.









	
Sometimes you have two or more commits on your pull request, which is
usually not desired by maintainers. The solution is to do an
interactive rebase and squash the previous N commits:




	
Tip: Please understand interactive rebase [https://help.github.com/articles/about-git-rebase/].
Checkout the branch the pull request represents, count the number[N]
of commits you need to squash [http://stackoverflow.com/questions/2563632/how-can-i-merge-two-commits-into-one]
from the pull requests or git log on that branch, then
git rebase -i HEAD~N. N (number of commits before) is usually 2
if you want to squash 2 commits. Change pick to squash for all
but one line. Save the configuration. Then force push the new commit
git push -f origin <branch>.









	
If you have unwanted commits attached to the pull request or
history is broken then you need to do an interactive rebase :




	
Tip: It is better to tell others that you are having such problem
as it needs rewriting history [http://git-scm.com/book/en/v2/Git-Tools-Rewriting-History].
Please understand rebasing [https://github.com/edx/edx-platform/wiki/How-to-Rebase-a-Pull-Request]
and please see your logs [http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History].
The solution is an interactive rebase [https://help.github.com/articles/about-git-rebase/]
Command: git rebase -i HEAD~N (N gives the number of the
revisions up in that branch). Try to pick N carefully count the commits
as maintainers will ask you to give the finalized result in a single
commit.





	
The interactive rebase on that branch will show the commands that
runs on that branch and finally shows on the pull request. Delete the
commits you don’t need and keep the ones you need. Squash the needed
commits to a single commit.





	
Note: Branches are technically a tagging system to commits that
have a hash value, they are relative, even the master branch.
It can operate with commands like squash, pick and many others. The
commands are played from top to bottom on each commit and finally
shown in the pull request. See the options [https://help.github.com/articles/about-git-rebase/].














Resolving Merge Conflicts


Conflicts are essentially two or more commits from different branches which
overlap because they have different content on the same revision.
Understanding Merge conflict [https://www.youtube.com/watch?v=zz7NuSCH6II],
you can manually resolve it with git.




Tools like kdiff3 [https://www.kde.org/applications/development/kdiff3/]
helps you pick that content of the commit which you want to get merged in
the final commit. A tutorial [https://www.youtube.com/watch?v=-CkqiIPAzgQ]
on using kdiff3. Kdiff3 can be configured for all types of version
control ranging from git, svn or mercurial.



Note: The merge conflicts can also be resolved with an interactive rebase.


Tips on Installing kdiff3

Ubuntu:


$ sudo apt-get install kdiff3




Mac:


$ brew install kdiff3




Configure kdiff3:

Recent Git versions have built-in support for kdiff3.


$ git config --global merge.tool kdiff3




This makes git mergetool launch kdiff3.


Note: We recommend that you refer to the kdiff3 documentation for
the latest installation instructions.










Become a git Expert


If you like git a lot and use it often, use tools like git-extras and
aliases to increase your productivity.




Alias


Saves you Keystrokes. These scripts are added to your .bashrc,
.zshrc or any file you want to source. Open .bashrc on your
favorite text editor. Follow the instructions.



Examples

alias gc="git commit -m "$1""

alias shortform="the longer version of the command"








git-extras [https://github.com/tj/git-extras]


Get 40 extra commands that you may find helpful but are missing in
git, i.e git-undo, git-summary, git-changelog, git-effort.




Installation [https://github.com/tj/git-extras/wiki/Installation]

Ubuntu:


$ sudo apt-get install git-extras




Mac:


$ brew install git-extras







Usage [http://vimeo.com/45506445]


	
git-summary # gives the status of the
hours and duration you are actually working on a git project.





	git-effort # shows your file stats on the project.


	git-undo # undo a git commit.


	git-extras # shows the list of commands.














          

      

      

    

  

    
      
          
            
  
Advanced testing


Note

Twill is going away in the OpenHatch code base and is being
replaced by WebTest (yay!).



The purpose of this page is to show you how to write automated tests
within the OpenHatch codebase.

If you already know how software testing works, skip to the section
Details specific to OpenHatch.


Tests: An overview

You can run the many tests that are part of the OpenHatch code:

$ python manage.py test





During the test run, you’ll see a bunch of dots. Dots mean success.


	Tip You really should write a test if you add new functionality.

	This page explains how and when to write new tests and how to
run the tests we have.






What a basic test looks like

Imagine this is in mysite/base/views.py:

def multiply(x, y):
    return x * y





Then this would be in mysite/base/tests.py:

import mysite.base.views

class TestMultiplication(django.test.TestCase):
    def test_return_one(self):
        self.assertEqual(35, mysite.base.views.multiply(7, 5))








When a test fails

When a test fails you will see:



	FAILED followed by the test_name


	the Traceback


	the failure summary (e.g. FAILED (failures=2, errors=1, skipped=9))







To force a failure, maybe you are just curious to see what it will
look like, you can add to the test code:

self.assertTrue(False)





This assertion will fail and so will the test containing this code.






General testing tips


Read the official Django testing guide

The official guide on Django testing [http://docs.djangoproject.com/en/dev/topics/testing/] is quite good. It says:


The best part [about writing tests for Django code] is, it’s really
easy.




OpenHatch contributors use the Django “unit test” style of writing tests.




How to write code that is easy to test

If you are writing a function, have it “accept arguments” for its data,
rather than having it calculate the input itself. For example:

Good:

def multiply(x, y):
    return x * y





Less good:

def multiply(x):
   y = settings.MULTIPLICATION_FACTOR
   return x * y





It’s okay to rely on things like system settings and database content, but
in general if your functions are simpler, they are easier to test.






Details specific to OpenHatch


We regularly run Automated Testing

OpenHatch’s Automated Testing is run by Jenkins, with the interface on the
virtual machine donated by GPLHost @ http://vm3.openhatch.org:8080/




Where to write your tests

In general, add tests to the same Django app as you are editing. For
example, if you made changes to base/views.py, then add a test in
base/tests.py.

The test files are kind of ‘sprawling’. It doesn’t really matter where
within the tests.py file you add your test. I would suggest adding it to
the end of the file.




The OpenHatch test case helper class


Note

Twill is going away in the OpenHatch code base and is being
replaced by WebTest (yay!).



In mysite/base/tests.py there is a TwillTests class. It offers the
following convenience methods:



	login_with_client


	login_with_twill










The subversion missions test cases

When running or testing the subversion mission locally, subversion (svn
and svnadmin) must be installed on the local system. If subversion is
not installed, the tests will not be run.

Settings information related to subversion, such as path locations, can
be found in the settings.py.






About fixtures


Note

Twill is going away in the OpenHatch code base and is being
replaced by WebTest (yay!).




To run your tests

What Django app did you write your test in? Let’s pretend it was in the
base module. To run all the tests in base:

$ python manage.py test base








To run just a few specific tests

You can run just one test. For example, a test named base.Feed:

$ python manage.py test base.Feed





Or you can run two (or more) tests:

$ python manage.py test base.Feed base.Unsubscribe.test_unsubscribe_view





The structure here is app.class.method. If you want to just run your own
new test, you can do so.






Mocking and patching


Note

This section is important, but we haven’t written it yet. Please
consider helping us write this section.
See Documentation






Testing with Twill, versus the Django test client


Note

Twill is going away in the OpenHatch code base and is being
replaced by WebTest (yay!).



To make a long story short:



	The Django test client is good at introspecting how the function worked
internally.


	Twill tests are good because they let you say “Click on the link
called ‘log in’”.













          

      

      

    

  

    
      
          
            
  
Deployment

This is a quick-and-dirty page explaining how to deploy new versions of the
OpenHatch code.


Prerequisites


	You must be part of the Login Team (so your SSH key is available in Github
and you’re in the openhatch-committers group, and also that your SSH key is in
the deploy@linode.openhatch.org account’s .ssh/authorized_keys)


	You must be at a computer with that SSH key


	Deploying takes about 3 minutes, maybe less if things go well. (If there are
database migrations to run, it can take dramatically longer.)







How the deploy script works

You need to have these programs installed: ssh, git.

The script does two things:


	Pushes the current local master branch to Heroku.


	SSHes to the two linodes, where it runs mysite/scripts/deploy_myself.sh
which updates the site.







Recommended way to use the deploy script

# Make sure .git/config has these 5 lines
[remote "origin"]
    url = git@github.com:openhatch/oh-mainline.git
[remote "heroku"]
    url = https://git.heroku.com/openhatch-production.git
    fetch = +refs/heads/*:refs/remotes/heroku/*

git fetch  # get the latest

git checkout origin/master -b deploy_me  # create a deploy_me branch

# Then get the patch file with e.g. wget, and do:
# Import the patch into current branch, probably called deploy_me
git am /path/to/the/patch.file

git log  # and sanity-check it

# If you like it, do:
cd mysite
./scripts/deploy





It’s really important to make the separate branch so that you don’t accidentally
push random local work into the live site.




Notes about the deployment

Here are some relevant details of how web requests get routed to the
OpenHatch code.


	Web requests hit CloudFlare, which proxies them to Heroku (for
openhatch.org and www.openhatch.org) or linode.openhatch.org (for
other OpenHatch sites, like wiki.openhatch.org).


	linode.openhatch.org has an nginx that handles some requests itself,
and dispatches others to Apache.


	In production, we use a mysite/local_settings.py file that imports
mysite/deployment_settings.py and overrides the Django SECRET_KEY,
DATABASE_URL, and a few other settings.







Other sites we host

The OpenHatch organization hosts some other websites, including
bostonpythonworkshop.com and corp.openhatch.org. For information about
that, read the documentation on the wiki about static site hosting [https://openhatch.org/wiki/Static_site_hosting].







          

      

      

    

  

    
      
          
            
  
Deploying to Heroku


Overview

Heroku is a service that provides web application hosting. They have a
free-of-cost tier. If you want to create a web URL for the changes you’ve
made to your version of the OpenHatch site, deploying that code to Heroku
is an easy, no-cost way to do that.

The steps are all listed below. Keep reading to start following
them. Note that many of the instructions require typing commands into
a command prompt.




Install the Heroku toolbelt and log in

To use the Heroku service, you’ll need to create an account on their
website and install software that makes it easy to interact with their
service.

Read their instructions [https://devcenter.heroku.com/articles/quickstart] to do that. Be sure to configure your SSH
key with the service. (If you need help with that, read their docs or
find OpenHatch people on IRC.) Finally, make sure you have run the
“heroku login” command.

If you don’t see instructions for your operating system, look in this page’s
Troubleshooting section.




Create a Heroku app

On the Heroku service, individual sites are called “apps”. You’ll need
to create an app corresponding to the code you want to deploy
there. At the time of writing, you are permitted to create an unlimited
number of apps for free. Therefore, I personally recommend creating an
app whose name is similar to the branch name on your computer.

This app name appears in public as part of the domain name, so choose
something you don’t mind other people reading! (If you leave out the app
name, Heroku will pick a random cute name for your app.)

On your computer, within a terminal, change directory into your clone
of oh-mainline. You’ll use the “heroku” command to create your
app. (In the example here, I’ve named my app “openhatch”.
Substitute your own app name!) So, type something like this:

$ heroku create openhatch





You should see this output:

Creating openhatch... done, stack is cedar
http://openhatch.herokuapp.com/ | git@heroku.com:openhatch.git
Git remote heroku added





Now push your local git repo to Heroku with this command:

$ git push heroku master





You should see this output:

Initializing repository, done.
Counting objects: 70870, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (23526/23526), done.
Writing objects: 100% (70870/70870), 78.90 MiB | 103 KiB/s, done.
Total 70870 (delta 43536), reused 70870 (delta 43536)

-----> Removing .DS_Store files
-----> Python app detected
-----> No runtime.txt provided; assuming python-2.7.4.
-----> Preparing Python runtime (python-2.7.4)
-----> Installing Distribute (0.6.36)
-----> Installing Pip (1.3.1)
-----> Installing dependencies using Pip (1.3.1)
       Downloading/unpacking psycopg2 (from -r requirements.txt (line 2))

...

       Successfully installed psycopg2 PIL
       Cleaning up...

-----> Discovering process types
       Procfile declares types -> web

-----> Compressing... done, 70.5MB
-----> Launching... done, v5
       http://openhatch.herokuapp.com deployed to Heroku

To git@heroku.com:openhatch.git
 * [new branch]      master -> master





Because of the large size of the OpenHatch git repository, the first
git push may take a few minutes.

As you make local changes, you can just use the same “git push”
command to update the code on Heroku. Note that if you end up
rewriting history, you may need to add a plus sign to the above
command, e.g.:

$ git push heroku +HEAD:master








Set up the database

Now that your version of the OpenHatch code is on Heroku, you’ll have to
initialize the database that Heroku automatically created for you.

Now, initialize the database with:

$ heroku run python manage.py syncdb --noinput





More information from Heroku will scroll by. You may notice

( INFO     Some parts of the OpenHatch site may fail because the lxml
  library is not installed. Look in ADVANCED_INSTALLATION.mkd for
  information about lxml )





At this point, this is not an issue.

You’ll also need to run the migrate command:

$ heroku run python manage.py migrate








Visit your app on the web

Now you can go to the Heroku URL for your app. If you’re not sure what
that URL is, you can type:

$ heroku apps:info





Look for the “Web URL” at the bottom of the output, and visit that in
your web browser.

Now, celebrate! Your OpenHatch instance is on the web. Go get yourself
a strawberry smoothie (making substitutions as necessary for your
dietary restrictions).




Troubleshooting


	If Heroku doesn’t have instructions for your operating system, and you
have a package manager, try installing git and rubygems from your
package manager. For example, on Fedora and other systems that use yum,
you could type:

$ sudo yum install git rubygems





Then run:

$ sudo gem install heroku







	You can verify the status of your application with:

$ heroku ps
=== web (1X): `./mysite/manage.py runserver 0.0.0.0:$PORT`
web.1: up 2014/01/04 13:48:55 (~ 17m ago)







	From time to time things might not work as expected. In those times, Heroku
provides with a nice log facility:

$ heroku logs





More documentation on how to use Heroku’s log facility [https://devcenter.heroku.com/articles/logging] and processes [https://devcenter.heroku.com/articles/procfile] is
available to you.











          

      

      

    

  

    
      
          
            
  
Maintenance tasks

The OpenHatch web app has some built-in features to help you maintain
an instance. This file lists those features and how to use them.


Importing data snapshots

If you want your site to have a database filled with data like what is
on the main OpenHatch.org site, you can import a data snapshot.

See https://openhatch.org/wiki/Importing_a_data_snapshot for more
information about that. You can read our privacy policy at
https://openhatch.org/policies-etc/.




How to run the bug importer

This can be done via cron job.




Run the hourly tasks related to profiles

There’s a management command that runs necessary maintenance tasks. At
time of writing, it tries to keep our cache of recommended bugs more
or less up to date with the state of the bug table in our database.

To run this maintenance task hourly, run these commands:

# The following use of GNU screen is helpful for running maintenance tasks,
# but is not necessary.
screen -RD   # Create an instance of screen, or attach to an existing one.

# Type Ctrl-a, c to open a new screen
while (true); do ./manage.py profile_hourly_tasks; sleep 1h; done

# Type Ctrl-a, d to hide ("detach from") the screen








Adding jQuery UI components

When you want to add a jQuery UI component, go to http://jqueryui.com/download

Select the following options, plus yours:


	Sortable


	Accordion


	Tabs


	Progressbar




Note that the site will automatically select any dependencies (like jQuery UI’s
“Core”).

First, under “Theme”, select “No Theme”. Under “Version”, select “1.7.2
(stable release, for jQuery 1.3.2). Then click your little cartoon hand on the
Download button.

Unzip the file in /tmp/, and just extract the file
js/jquery-ui-1.7.2.custom.min.js, and cp it to mysite/static/js/. That will
overwrite the existing jQuery UI bundle.

Be sure to check using git diff that the change you’ve introduced in git’s view
of that file is exactly what you expect.

Finally, don’t forget to add your component to the list above, so the next
person does the right thing.




Editing the website’s CSS

The CSS files for OpenHatch repository can be found in the static folder of the oh-mainline repository:
https://github.com/openhatch/oh-mainline/tree/master/mysite/static

These CSS files has been written in Less format. Not sure what Less is? Read the official documentation [http://lesscss.org/].







          

      

      

    

  

    
      
          
            
  
Adding a new bug tracker via git

(You can also add a bug tracker via the website [http://openhatch.readthedocs.org/en/latest/tutorials/adding_new_bug_tracker_web.html].)


Clone the repository

You will need to have a local copy of our git repository. You can read about
that in the Getting Started.

You will also need a local copy of a sister project,
“oh-bugimporters”. You can get that from https://github.com/openhatch/oh-bugimporters .




Overview of steps

You will need to achieve all the following things:


	Adjust oh-bugimporters so that it generates output with data from your
bug tracker of choice.


	Ensure the data imports properly, by running:

python manage.py import_bugimporter_data < output_from_bugimporters.jsonlines



	Ensure the web UI shows an option for the new kind of bug tracker. To do
that, take a look at mysite/customs/models.py.







In a little more detail


	Clone oh-bugimporters to your local machine, and oh-mainline in parallel,
such that both folders are on the same level in the directory hierarchy.


	Initialize oh-bugimporters with:

virtualenv env





and:

env/bin/python setup.py develop





See also oh-bugimporters/docs/intro.rst for more infos about how to
setup the subproject of oh-bugimporters for development and testing.



	Now add your new tracker to the bugimporter folder, by using one of
the existing variants as template. If possible, add proper tests too.


	Create a testfile with basic queries and then run a command like:

env/bin/scrapy runspider bugimporters/main.py -a input_filename=/tmp/input-configuration.yaml -s FEED_FORMAT=json -s FEED_URI=/tmp/results.json -s LOG_FILE=/tmp/scrapy-log -s CONCURRENT_REQUESTS_PER_DOMAIN=1 -s CONCURRENT_REQUESTS=200





in the oh-bugimporters folder. Here /tmp/input-configuration.yaml is
the prepared input file with the following basic content (may vary,
depending on the bugtracker’s implementation):

meta: {limit: 500, next: null, offset: 0, previous: null, total_count: 1}
objects:
- base_url: !!python/unicode 'http://scons.tigris.org/issues'
  bitesized_text: !!python/unicode 'Easy'
  bitesized_type: !!python/unicode 'key'
  bugimporter: !!python/unicode 'tigris'
  custom_parser: !!python/unicode ''
  documentation_text: !!python/unicode 'documentation'
  documentation_type: !!python/unicode 'subcomp'
  existing_bug_urls: []
  get_older_bug_data: null
  queries: [!!python/unicode 'http://scons.tigris.org/issues/xml.cgi']
  tracker_name: !!python/unicode 'SCons'





After the run, check the log files /tmp/scrapy-log and /tmp/results.json
for correct results.



	For the website part (note how we’re switching to the oh-mainline folder
now) you have to initialize your local installation of OpenHatch with the
command:

python manage.py syncdb --migrate --noinput







	Once you have changed the files mysite/customs/forms.py and models.py to
add your new tracker type, you have to recreate the migration scripts for
the customs folder. So call:

python manage.py schemamigration customs --auto





See also the page https://openhatch.org/wiki/Making_schema_changes for more
infos on managing and updating schema changes.



	Now you can start the local OpenHatch site with:

python manage.py runserver





and direct your browser to it at http://localhost:8000 .



	Add a user and your project, and setup the new bug tracker for it, as you
would do normally.


	Ensure that the base folder for temporary import files is writable for your
current user. The default folder as used in ./run_importer.sh is:

/var/web/inside.openhatch.org/crawl-logs







	Patch the import script ./run_importer.sh and change the URL for the
OpenHatch site from “https://openhatch.org/…” to “http://localhost:8000”.
Otherwise, the run_importer script tries to download and update all bugs
that are currently tracked at the real website…which might take a little
while.


	Run the import script:

./run_importer.sh





and wait for it to finish. Then reload the browser page and check that the
bugs have indeed been imported properly.



	If you mixed things up, you can reset the database completely at any time
with:

python ./manage.py reset_db --router=default





This will leave you with a blank OpenHatch instance, without any users,
projects or bugs. Then rinse and repeat the steps above…





If you get stuck, please email the list or ping paulproteus or others in IRC!




Submit a patch

This is the easiest part. See How we handle contributions!







          

      

      

    

  

    
      
          
            
  
Developer Notes

This section of the documentation is intended to provide developers
with technical information that is helpful to know. This information
will typically only be necessary for the short term (less than 6
months) as developers collaborate on larger issues that require
a longer development timeframe.

We make this information available since it will likely be useful
beyond the scope of one individual issue in our GitHub issue tracker.


January 2015 Notes


DataImportAttempts (DIAs)

DataImportAttempt is a model that contains metadata about when the
profile importer (the thing that attempts to automatically fill in
your list of projects you’ve contributed to, by letting you type in
a query like ‘asheesh@ahseesh.org’, and then the code will trigger
some background HTTP GETs to other services (see – an attempt to
import data!) and log a note about this attempt in a model called
DataImportAttempt. We no longer do automatic profile importing, so
we don’t need DIAs.




Twill

Twill being phased out of our tests and is being replaed with the use of webtest.




Ohloh

For project icons, we will be moving away from the use of Ohloh (now
know as OpenHub). Ohloh is not used for any other purpose in the
OpenHatch codebase. We will refactor the way project icons are fetched so we get them a different way than through Ohloh.









          

      

      

    

  

    
      
          
            
  
Operations Guide

Here’s more information about our project structure that may be useful.



	Monitoring
	The basics

	Access

	Notifications

	Making changes

	Viewing the web interface, and handling the daemon

	In case of emergency

	TODOs

	Related





	Continuous Integration
	Overview

	Travis CI

	Jenkins

	Future work





	Backups of the live site
	Overview

	Details

	Restoring

	More info about encryption





	Emergency operations for the OpenHatch server
	What to do when the site isn’t working

	Lish: Emergency reboots, and more

	To get your key in the list





	WordPress theming
	Overview

	Details

	Editing the Wordpress CSS

	Related





	Front-end style guide
	HTML/CSS

	Usage instructions for the code, pre and tt tags

	Editing the training mission hints

	JavaScript

	Good references





	Web API
	The basics

	API v1 Profile data





	Checking Coding Style Errors in Pull Requests with lint-review
	Overview

	Configuration





	Issue tracking using GitHub Issues
	Overview

	Issue labels

	Historical note on issue tracking





	Security Considerations for the OpenHatch Application
	Policy

	Known Issues









Sections to add:


	Adding a dependency


	A tour of the templates


	Automated testing








          

      

      

    

  

    
      
          
            
  
Monitoring


The basics


	linode.openhatch.org is the main OpenHatch box, which runs the website.


	linode2.openhatch.org is the secondary server for OpenHatch.
It hosts Nagios!


	vm3.openhatch.org is a third server, hosted at GPLHost, that runs the
Jenkins continuous integration server.


	The Nagios configuration is owned by a user called nagios on
linode2.openhatch.org.







Access


	We use ssh keys for login.


	If you want SSH access to that account, file a bug requesting it, and attach
an SSH key. You should hear back within 2 days; if you don’t hear back by
then, try to find paulproteus or jesstess on IRC.


	Then you can do:

ssh nagios@linode2.openhatch.org







	You’ll know it’s working if you are logged in. If you see a “Password:”
prompt, then it is not working.







Notifications


	Nagios notifications go to
monitoring@lists.openhatch.org [http://lists.openhatch.org/mailman/listinfo/monitoring]. Anyone can
subscribe to this list or read its archives.







Making changes

In brief, here’s what you need to know:


	Edit files in ~nagios/


	Once you know what changes you want to make, create a local branch with those
changes:

git checkout -b my_changes







	As you make changes, make meaningful commits. Also, tell “git commit” to use
your identity:

git commit --author="Some Body <some.body@example.com>"







	After you have made the changes, ask someone to review them and merge the
changes to master.


	Rationale: If you stick to the above process, it is fairly easy to roll
back to the “master” branch of the Nagios configuration.


	History: We came up with this process during issue332 [https://openhatch.org/bugs/issue332].







Viewing the web interface, and handling the daemon


	On linode2, ~nagios/secrets/ contains the mailman and Nagios web
interface passwords.


	View the Nagios web interface at http://linode2.openhatch.org/nagios3/


	To restart the Nagios daemon, run

sudo /etc/init.d/nagios3 restart












In case of emergency


	See Emergency operations for the OpenHatch server. People with ssh keys set up for
the Linode Shell (Lish) can reboot the box and have other limited emergency
capabilities.







TODOs


	Send Nagios notifications to IRC (#openhatch-auto?)?


	Make the Nagios web interface world-viewable.


	Version the monitoring configurations.


	Send SMS alerts to people who want them.


	Add historical trending (Munin)?







Related


	See also Emergency operations for the OpenHatch server


	See also the page about the Login Team










          

      

      

    

  

    
      
          
            
  
Continuous Integration


Overview

The OpenHatch code has a suite of tests. It’s important that when we deploy
the code changes to the website that all tests are passing.

Continuous integration [http://www.aosabook.org/en/integration.html] helps our developers see if their code changes are
passing all tests or are failing a test and additional code changes are
needed.




Travis CI

Travis CI [https://travis-ci.org] is a hosted, distributed “continuous integration” system (read
more on Wikipedia about Travis CI [https://en.wikipedia.org/wiki/Travis_CI]). The GitHub page for the oh-mainline
indicates whether our tests currently are passing.


Using Travis CI

There are multiple ways that Travis CI communicates the source code’s current
build status and whether tests are passing:


	The first is the “build” badge on the oh-mainline GitHub page displayed
at the top of the README. Clicking on the “build” badge will display
Travis CI’s status page for OpenHatch.


	OpenHatch’s Travis CI status page can be directly found at
https://travis-ci.org/openhatch/oh-mainline.


	GitHub also provides information on every pull request about Travis CI’s
testing and status related to the individual pull request. This is very
helpful for developers and reviewers.


Note

Currently, Travis CI is showing that our tests are not passing
when tested with a MySQL database. Details can be found in the
OpenHatch issue tracker. We hope to have this issue resolved soon.










Configuration for Travis CI

The .travis.yml file in the oh-mainline directory contains configuration
information used by Travis CI.






Jenkins

Jenkins is a “continuous integration” tool (read more on Wikipedia [https://en.wikipedia.org/wiki/Continuous_integration]). It
wakes up once an hour, checks the git repository for new commits, and runs the
test suite. For additional information about Jenkins, read more on Jenkins [https://jenkins-ci.org].

Status information about continuous integration projects can be found on
OpenHatch’s Jenkins dashboard : http://vm3.openhatch.org


Jenkins configuration

There are a number of “projects” in Jenkins. Different ones run different
suites of tests in the OpenHatch codebase. They include or exclude different
Django apps from the OpenHatch codebase.

For example,


	Test the “installation” instructions


	This tests the OpenHatch developer instructions for building OpenHatch.






	Test the “customs” app


	The tests for the customs app often go out to the network and can
break if the remote servers change their APIs.






	Test the “search” app


	The volunteer opportunity finder (“search”) tests can take a while to
run, so we separate them out.






	Test all apps except customs and search


	This is the catchall that tests the rest of the code.








Status information about continuous integration projects can be found on
OpenHatch’s Jenkins dashboard.




Jenkins administration

Right now, only Raffi and Asheesh can modify the configuration of Jenkins.

Anyone can enqueue a run of the test suite by clicking a “Build” link within
a Jenkins project. That’s a good thing.






Future work

It would be super nice if, whenever there was a commit to GitHub master that
passed all the tests, it would be automatically deployed.







          

      

      

    

  

    
      
          
            
  
Backups of the live site


Overview

We have a free, donated account from rsync.net that lets us store 50GB of data
there.

We use duplicity (as per the rsync.net official document [http://www.rsync.net/resources/howto/duplicity.html]). We do full backups
weekly and incrementals daily. We encrypt these backups.

The only server essential to continued operation of the site is
linode.openhatch.org. The other servers do unimportant things that do not keep
state. It would be convenient to have backups for them, but it is not
essential, so for now I suggest we simply skip it.




Details

We use this script to run backups. It runs via root’s crontab, and emails the
results to Asheesh daily.


	do_backup.sh: in git [https://github.com/openhatch/oh-restore/blob/master/do_backup.sh]







Restoring

duplicity has a built-in “verify” feature, which checksums the data, but that
doesn’t help us ensure that our backup was complete.

Therefore, weekly, we automatically restore and test the virtual machine, via a
Jenkins job. http://openhatch.org/bugs/issue530 describes that.




More info about encryption

This backup is encrypted with a GPG key that has been emailed to hello
@openhatch.org on Thu, Jan 26.







          

      

      

    

  

    
      
          
            
  
Emergency operations for the OpenHatch server

The main OpenHatch server is a virtual machine hosted by linode.com.


What to do when the site isn’t working


	Check if SSH is alive

telnet linode.openhatch.org 22





You should get a banner message. If so, things are not so bad. Someone with
root (like Asheesh/paulproteus) can probably SSH in and figure out what’s
going on.



	If SSH is not alive, and the website is down…
Find Asheesh, if possible. Otherwise, well, you might want to know about
Lish.







Lish: Emergency reboots, and more

If you can’t load the website, and if the Linode doesn’t even respond to SSH,
then people with access can connect over the Linode Shell and read console
messages or reboot the virtual machine.

If you want to help us by being part of an emergency crew who can reboot it,
see the next section.

PLEASE do not reboot the machine without getting in touch with paulproteus
(Asheesh), unless it’s clearly a good idea to reboot it!


	http://library.linode.com/troubleshooting/using-lish-the-linode-shell


	Lish via SSH


	ssh linode22043@atlanta76.linode.com


	Lish listens on ports 22, 443, and 2200











To get your key in the list


	File a bug, and assign it to paulproteus.


	The subject should be, “Add my SSH key to lish for linode.openhatch.org”


	Explain who you are and why it is a good thing for you to be able to see
the “physical console” of the virtual machine.






	You should hear an answer back within 2 days.










          

      

      

    

  

    
      
          
            
  
WordPress theming


Overview

The OpenHatch blog is powered by WordPress. This Django-based codebase
has some minimal hooks that enable us to style the WordPress blog by
making changes to this Django codebase.




Details

On a local instance, if you visit
http://localhost:8000/+theme-stubs/wordpress/index , you will see an amusing
absurdity: a Django template has been rendered, but the template
blocks have been filled with placeholder strings.

The purpose of this page is to provide a machine-readable version of
our theme which can, in turn, be processed by a separate engine to be
turned into a WordPress theme.

(In the future, we may use this to generate a MediaWiki theme… and
maybe a Roundup theme? Who knows.)

It is controlled by the template in mysite/base/templates/base/wordpress_index.html.

One thing to note: When exporting the page for use with WordPress,
make sure your settings are configured to set DEBUG to False, or else
every WordPress user will get a copy of the Django Debug Toolbar. This
is not actually a problem, just an amusing fact. (TODO: When
django-debug-toolbar gets this pull request landed
<https://github.com/django-debug-toolbar/django-debug-toolbar/pull/303>,
we can use that in the instructions.)




Editing the Wordpress CSS

If you wish to change the blog’s appearance, you may need to edit the CSS file here:
https://github.com/openhatch/oh-mainline/blob/master/mysite/static/css/blog-style.css




Related


	See also https://github.com/paulproteus/oh-wordpress-theme , the project with code and documentation on generating a fully-functional WordPress theme from this page.










          

      

      

    

  

    
      
          
            
  
Front-end style guide

This style guide covers the interaction of HTML, CSS, and JavaScript on
OpenHatch’s main website.

The “front end” refers to what people see in their web browsers. We create
that experience using HTML, CSS, and JavaScript. We tend to use the jQuery
library so we write less JavaScript, and we try to follow good conventions.

This document contains links to high-quality style suggestions from others,
and also names some common problems that have occurred in the OpenHatch
code in the past.

NOTE: Most of the HTML/CSS advice applies to the upcoming site redesign,
so it may not cross-apply well to the live site for the moment.


HTML/CSS


Colors

Main background: lightest grey, #f8f8f8, with light-hatch.png background image.
Header and footer: dark grey, #333, with dark-hatch.png background image.

Default text color: darkest grey, #222; black is used sometimes for emphasis.

Links: orange, #FF6D3D; white; darkest grey, #222;

Links don’t ever change color; on mouseover, they get underlined.

Borders: translucent light blue, rgba(100, 200, 255, .3); dashed light
grey, #e4e4e4;

Module interiors are slightly translucent white: rgba(255,255,255,.6);
Occasionally (e.g. the front page) a module can have a full-white
interior for emphasis.

Try to avoid font-weight: bold; if possible; differentiate headers
and so forth by size, or maybe color, instead.

Try to store styles in our CSS files or LESS files, rather than inline
in the element.




Cartoons

Cartoons are always 141px high. They should always be flush with the module
beneath them. They are only used on one-column pages (even if there are
multiple-column areas farther down the page, the first module should be
a full-width module).




Layout

There are two base template layouts for pages: one-column and two-columns.
Two-columns has a left 1/3 column and a main 2/3 column, cut on the same
lines as a three-columns outline.

The template that a page uses should be based on what the first module set
on the page looks like. If you want to add more columns on a one-column page,
just create the appropriate divs. If you want one or three columns on a
two-column page, put them inside the {% more_content %} block.

Two column CSS layout:

<column column-left> <column column-right>





Three column CSS layout:

<column three-column> <column three-column> <column three-column three-column-last>








Modules and submodules

Modules have the following structure:

<module>
    <module-head>
    Optional.
    The name of the module goes here, inside a h3.
    Inside of the h3 tag, you can make the title a link, if you want.
    </module-head>
    <module-body>
    Has a white background, the module contents all go in here, including submodules.
    </module-body>
    <module-foot>
    Optional.
    Want one of those clever links below your module content on the bottom right? Put it in here.
    If you want a link to also appear on the left, give it the "module-foot-left" class.
    </module-foot>
</module>





Submodules have the following structure:

<submodule>
    <submodule-head>
    Optional.
    This is where the title for the submodule goes, if you want to differentiate it somehow.
    Styling for this isn't standardized yet... see /missions/ for an example.
    Recommended to put the title inside an <h3>.
    </submodule-head>
    <submodule-body>
    Also optional.
    If you don't want to bother with a head/body distinction, you can just put content straight inside the submodule.
    </submodule-body>
</submodule>





(all tags are the class names of the relevant divs, unless otherwise stated)

You may want to put your submodules inside a <submodule-container> with
a <clearer>, if you’re floating them but don’t want other content to ride up.




CSS

Name IDs and classes using hyphens, not underscores or camelcase.
(e.g. “#front-page”, not “#front_page” or “#frontPage”). CSS file names
should use the same convention. (Not all of them do, but hopefully that
can eventually be corrected.)






Usage instructions for the code, pre and tt tags

If you’re interested in modifying the ‘Hints’ sections of the training
missions, here are some guidelines regarding the usage variations of the
code, pre and tt tags to keep in mind.

The CSS properties for the pre tag and the code tag are such that a pre element
has a newline before and after it and is on a newline itself and a code element
does not have a newline before or after it but is on a newline itself. A tt
element neither has a newline before or after it nor it is on a newline itself.

Note: As of HTML5, the tt tag has been deprecated.

Here are a few examples:

If you write:

<p>If you are on Linux, type: <opening tag>man diff<closing tag> at the command line.</p>





If you replace the “<opening tag>” and the “<closing tag>” above in the code
with pre tags, the output would be as follows:

If you are on Linux, type:

man diff

at the command line.





If you replace the “<opening tag>” and the “<closing tag>” above in the code
with code tags, the output would be as follows:

If you are on Linux, type:
man diff
at the command line.





If you replace the “<opening tag>” and the “<closing tag>” above in the code
with tt tags, the output would be as follows:

If you are on Linux, type: man diff at the command line.








Editing the training mission hints

While working on Issue 958 [https://openhatch.org/bugs/issue958], it was found that in the hints for training
missions, the “low” hint sometimes had trouble laying out its child elements
properly due to the CSS properties of its parent div and this caused the “low”
hints to display weirdly. To fix this issue, a new CSS property for ‘#low’ was
added to mysite/static/css/missions/base.css. However, here are some guidelines
for how to phrase things when editing the training mission hints:

The first sentence of a training mission hint should be a paragraph (p tag).

The first sentence of a training mission hint should be a full sentence.

Full sentences start with capital letters and end with periods.




JavaScript

This is a list of strategies for avoiding problems that have plagued OpenHatch
code in the past. Note: that the OpenHatch code does not yet follow this
guide. It ought to. Perhaps it can be a release goal in the future.


If it’s not a link, don’t make it a link

If there’s no fallback for non-JS users, don’t use the <A> tag.

Issue 478 [http://openhatch.org/bugs/issue478] covered a problem where a user was clicking on what appeared
to be a link. Because there is no JavaScript equivalent for the functionality
the user clicked, it simply should not be a link. (Though style-wise it
may look the same to the user.)




Don’t rely on “return false;”

It is easy to mistakenly use “return false;” at the end of a JavaScript
callback when you really mean event.preventDefault(). You can read more [http://fuelyourcoding.com/jquery-events-stop-misusing-return-false/] about
this problem.






Good references

This document by isobar [http://na.isobar.com/standards/] looks great.







          

      

      

    

  

    
      
          
            
  
Web API


The basics

The OpenHatch Python code provides some basic APIs that can be used by
JavaScript on the web. Currently, these APIs are only used by
JavaScript within the OpenHatch site itself. In the future, people
might want to re-use our data in off-site JavaScript apps, and we hope
to enable that.

This page documents the data export APIs that exist.




API v1 Profile data

The URL /+api/v1/profile/ is a RESTful API base URL. It has one endpoint,
portfolio_entry.

You can find out more about it interactively in your web browser, by
visiting a URL like
http://127.0.0.1:8000/+api/v1/profile/portfolio_entry/?format=json .

Additionally, if you have “cURL” (a common web page downloading tool),
you can run this command from your computer’s command prompt:

curl http://127.0.0.1:8000/+api/v1/profile/portfolio_entry/





Note that with curl (and with AJAX clients), you can (and should) omit
?format=json.

This exports data from the PortfolioEntry model in
mysite/profile/models.py. You can read the detailed code and
configuration behind it at mysite/profile/api.py. The API is powered by
the Tastypie Django app.

More information:


	Django Tastypie documentation: http://django-tastypie.readthedocs.org/en/latest/toc.html










          

      

      

    

  

    
      
          
            
  
Checking Coding Style Errors in Pull Requests with lint-review


Overview

We use lint-review [https://github.com/markstory/lint-review], an automated code linting bot that checks pull requests for code style errors (such as pep8 violations). It uses the Github API to fetch the changes, runs linters against them and comments on the pull request if any code style errors are there in the changes.




Configuration

The .lintrc file stores the configurations for the lint-review bot. You can find the .lintrc file for this project here [https://github.com/openhatch/oh-mainline/blob/master/.lintrc].







          

      

      

    

  

    
      
          
            
  
Issue tracking using GitHub Issues


Overview

We use GitHub Issues [https://github.com/openhatch/oh-mainline/issues] for tracking issues. The Managing Projects [https://help.github.com/categories/100/articles] section of
GitHub Help [https://help.github.com/] provides useful information about filtering, sorting, assigning,
and labeling issues.




Issue labels

We use Labels to categorize an issue’s priority, status, and type as well as
other helpful user information. The Bitesize label is used to indicate that
the issue is suitable for a new contributor to the project.




Historical note on issue tracking

Prior to using GitHub Issues, we used two other issue trackers. To preserve
historical information, issues that were imported from past trackers can be
identified by the user creator (@imported-from-roundup in the oh-mainline repo
and @bot-sunu in the oh-bugimporters repo).







          

      

      

    

  

    
      
          
            
  
Security Considerations for the OpenHatch Application


Policy

OpenHatch will make its best effort to protect our users, including their
accounts and any identifying or personal information they store with us.
To that end, we care deeply about security issues that result in
compromises to:


	Authentication


	Authorization


	User accounts


	Cross-site scripting attacks


	SQL injection attacks


	any other vulnerability that affects our data or our users




There are certain classes of issues that we de-prioritize, because they
do not materially affect what we are trying to protect as listed above.
These classes include, but are not limited to:


	Open redirections in OpenHatch applications







Known Issues


	It is known the the OpenID registration flow has the possibility of an
open redirect to another site. Since it would be non-trivial to exploit
this vulnerability in a way that would compromise the user, we are
erring on the side of having a less complicated code base and leaving
the bug unpatched. If a future version of one of our vendor libraries
patches the bug, we may upgrade the library to close the open
redirect.










          

      

      

    

  

    
      
          
            
  
Tutorials

Here are some tutorials that may help you use the site.



	Writing Training Missions
	Simple Training Missions





	Adding a new bug tracker





Tutorials we hope to add:


	Adding a field to the profile


	Making schema changes








          

      

      

    

  

    
      
          
            
  
Writing Training Missions

Training Missions are tools which help people learn the skills needed
to contribute to open source projects without burning their fingers.
They can be background information (Windows Setup [http://openhatch.org/missions/windows-setup/]), or more
involved (Subversion Training [http://openhatch.org/missions/svn], which creates repositories for each
user to work on).

Missions are made up of some Python code (“views”), and some HTML
(“templates”). OpenHatch uses some conventions to make developing new
training missions as simple as possible.


Note

This document currently covers Simple (non-interactive) Training
Missions. We are working to update it to describe interactive
missions, as well.




Simple Training Missions

Simple Training Missions provide users with step by step
documentation. As an example we’ll start a new mission to document how
to make missions (how meta!), cunningly named “Make a Mission”.

To begin developing a new mission, we need to create two directories:
one for the mission code, and one for the mission templates. Both are
stored in sub-directories of the OpenHatch repository
(oh-mainline; see Getting Started for more information).

To create the new directories:

$ cd oh-mainline/mysite/missions
$ mkdir makeamission
$ mkdir templates/missions/makeamission





The first directory we create is the code directory. The second is the
template directory.

It will help other developers work on your code if you use the same
name for both directories. Note that we’re making directories named
makeamission, not “Make a Mission”. That’s because the directory
name needs to be a valid Python package name, which means no spaces or
non-alphanumeric characters.

Within the code directory (makeamission), you’ll need
to create an empty file named __init__.py; this tells Python that
this directory is a package [http://docs.python.org/tutorial/modules.html#packages]. On Mac OS X and Linux, you can do this
by running the touch command:

$ touch makeamission/__init__.py





On Windows, just create the file with your favorite (or second
favorite) text editor.


Defining Steps

Missions are made up of a sequence of steps: each step has a little
bit of Python code and an HTML template.


Note

It may be helpful to refer to existing Mission code as you work on
yours: examples are a great way to learn. The Windows Setup
mission (in the setup directories) is an especially simple
example.



Create a file named views.py in your code directory; we’ll start
writing the Mission steps there.

The simplest type of Mission Step just renders a template. That’s what
we’ll start with. In views.py, start with the following code:

from mysite.missions.base import MissionBaseView


class StepOne(MissionBaseView):
    url = '/'
    template_name = 'missions/makeamission/index.html'
    view_name = 'main-page'
    title = 'Setting up Your Mission'





This Python code defines the first step in our new Mission. There are
a few things to note:


	StepOne is the name of the step’s class. This needs to be
unique for your steps in the Mission.


	MissionBaseView is the basic building block of Mission Steps and
provides some helpers you can use in the template.


	The url defines what the URL of this mission will be within
the Mission. This must begin with a /.


	The view_name (main-page in this case) allows us to refer to
this view in other views.


	The title will be displayed in the sidebar of the Mission.




After you’ve added the first step, let’s add a second step:

class StepTwo(MissionBaseView):
    url = '/templates'
    template_name = 'missions/makeamission/steptwo.html'
    title = 'Writing Mission Templates'





Note that here we’ve omitted view_name. When it’s omitted
OpenHatch uses the url setting (omitting the leading /) for
the view name.




Step Templates

Each of the Steps we’ve defined refer to a template: these templates
will contain the text content for each step. OpenHatch uses Django
templates [https://docs.djangoproject.com/en/1.3/topics/templates/], which add some logical functionality to plain HTML.

Let’s start with the first step, StepOne. In a new file
(templates/missions/makeamission/index.html), add the following
content:

{% extends 'missions/mission_base.html' %}
{% load base_extras %}

{% block mission_main %}
<div class='submodule fat'>
  <div class='head'>
    <h3>{{ title }}</h3>
  </div>
  <div class="body">

    <p>Real content here, please!</p>

    <p class="next_mission_link">
        <a href="{{ next_step_url }}">Go forward and make a template!</a></p>
  </div>
</div>

{% endblock mission_main %}





There are a few interesting things here:


	The first line tells OpenHatch that this page should be based on the
common Mission template.


	{{ title }} and {{ next_step_url }} are substitutions:
Mission views provide several conveniences so you don’t have to
repeat yourself. These include title (the step title),
next_step_url (the URL of the next step), and prev_step_url
(the URL of the previous step).




The template for the second step should be named steptwo.html,
which is what you specified in the class (StepTwo) above.




Mission Information

Missions are made up of a sequence of steps, so we need to define what
order those steps come in. Missions also have some information of
their own, like their name and an identifier.

We’ll define the sequence of steps and the metadata by adding the
following to our mission’s views.py:

class MakeAMission(Mission):

    mission_id = 'make-a-mission'
    name = 'Writing New Missions'

    view_classes = (
        StepOne,
        StepTwo,
    )





We also need to modify the import at the top of that file to read:

from mysite.missions.base import Mission, MissionBaseView








Making it Accessible

The final step to writing your Mission is to make it accessible on the
site by telling OpenHatch how to route the URLs. Django projects define
URL routing in a file cunningly named urls.py. You can find this
in the mysite directory. You can begin by opening urls.py.
You’ll need to tell it where the file views.py for your new mission
lives by adding an import statement near the top of urls.py right
after the import statements for the existing training missions like so:

import mysite.missions.makeamission.views





In urls.py, you’ll also find a list of URL patterns – regular
expressions which Django will use to match URLs and figure out where to
send requests. Finally, add the new mission by adding a new item after the
other missions:

(r'^missions/makeamission',
    include(mysite.missions.makeamission.views.MakeAMission.urls())),





Two important things to note:


	makeamission in the include and import statements above refer
to the directory you created, so you’ll need to make sure the name matches.


	MakeAMission is the name you give your Mission class.




Once you’ve added it to the URLs, you can start the server and visit
http://localhost:8000/missions/makeamission/ to see your new mission!









          

      

      

    

  

    
      
          
            
  
Adding a new bug tracker

One of the pillars of OpenHatch is helping project owners get in touch with
developers willing to help, by offering them easy to fix bugs where they can get
started. In order to do this, OpenHatch crawls bugtrackers of many projects and
features them in the site.

If you have a project that you want to add to OpenHatch you can do it very
easily following these steps.


	Go to http://openhatch.org/customs/


	In the “Tracker Type” select box select the bug tracker that your project uses. If your bug tracker is not in that list, it may be a good a idea to contact us and let us know.


	Click on “Add a tracker” to add a new tracker


	You will be directed to a form where you need to fill specific information about your tracker. This form changes depending on the tracker type.




For Trac and Roundup:


	
	Fill the new tracker form like this:

	
	Tracker name: Name of your project


	Base url: This is the URL to the homepage of the Trac tracker instance. Remove any subpaths like ‘ticket/’ or ‘query’ from this.


	Bug project name format: This field contains instructions of how to fill it, but if you are not sure, probably {tracker_name} is the best option.


	Bitesized type: Choose the field that can help identify a bug as bite-sized. If you don’t find the field you need in the select box, you may have to contact us to add it.


	Bitesized text: The value that the Bitesized type contains for a bite-sized ticket.


	Documentation type: Ditto Bitesized type.


	Documentation text: Ditto Documentation text.


	As appears in distribution: For most cases you can leave this field empty.










	
	Click “Next” and you will be directed to another form:

	
	Url: Enter the URL of the CSV representation of a search result that only returns bitesized bugs for your project. Here is an example of how the value for that field looks for the GHC Tracker (Trac): hackage.haskell.org/trac/ghc/query?status=new&group=difficulty&format=csv&order=id&difficulty=Easy+%28less+than+1+hour%29&col=id&col=summary&col=status&col=owner&col=milestone&col=component&col=version&desc=1


	Description: Enter a description of the results that the search query returns.










	Click “Finish”.








          

      

      

    

  

    
      
          
            
  
Community Guide



	About the OpenHatch community
	We’re friendly and respectful

	Community structure





	Contact Us
	Chat with us on IRC

	Quick start





	Login Team
	Current members

	How to join

	What you get, when you’re on the login team

	How to deploy new versions





	Login Team Agreement
	How to use this document

	OpenHatch Servers Access & Usage Policies





	Web Analytics Team
	Purpose

	Who may join, and how to join

	Technology

	Members





	Domain Team
	Membership

	How to join

	What you get, when you’re on the team

	Information useful to members





	Collaboration tools
	Freenode IRC

	Email lists

	Etherpad

	Google Docs





	Quotes database
	The URL to the quotes DB

	How and when to submit a new quote

	How to approve quotes





	Ticket tracking
	The URL to the ticket tracking site

	Our normal workflow

	Request Tracker Admin Team

	How to help out

	hello@ migration

	Importing past mails

	How the ticket tracker is administered

	Further thoughts





	How to run an OpenHatch sprint
	Step 1: Figure out what you want to accomplish at the sprint

	Step 2: Pick a date & venue

	Step 3: Find funding (optional)

	Step 4: Figure out the maximum number of people we can support

	Step 5: Get the word out

	Step 6: Read the In-Person Event Handbook and follow its instructions

	Food sponsorship logistics notes





	THANKS









          

      

      

    

  

    
      
          
            
  
About the OpenHatch community

The OpenHatch website is an open source, free software project. There are many
ways that individuals and organizations can make contributions to it. Here’s
what you can expect when attempting to contribute code and documentation.


We’re friendly and respectful

The existing community is proud of its reputation for being friendly, welcoming,
and helpful. We want to accept code, documentation, design, and other contributions
from as many people as possible – that can include you!

We have people of all backgrounds in the project. Diversity is one of our project’s
strengths.

Generally, to contribute directly to the project’s growth, you can submit patches
or Github.com pull requests. You can read more about that.




Community structure

Here are some sub-groups of the OpenHatch community:



	Contributor: This refers to anyone who makes a contribution that gets put
in the main OpenHatch git repository. To become part of this, just show up
with a patch or pull request. (We’ll help you do that on the mailing list or IRC.)


	Github commit group: These are the people who can push changes to our main
git repository on Github. To become part of this, submit a few high-quality
code reviews and ask the project lead for this power.


	“Login team”: These are the people who can SSH into the main OpenHatch server.
To become part of this, submit a few high-quality code contributions and
then ask the project lead.


	“Project lead”: Asheesh Laroia is the project lead.  You can contact him with questions
about the project.







Anyone can contribute to OpenHatch, through submitting a patch or pull request.

You might be interested to know that OpenHatch is also a non-profit [https://openhatch.org/about/],
with its own governance. The non-profit and the code development team
share some people, but they do not share a power structure.







          

      

      

    

  

    
      
          
            
  
Contact Us

Talk to us on IRC (#openhatch on irc.freenode.net).  Not familiar with IRC? See Chat with us on IRC below!

Join our contributors mailing list [http://lists.openhatch.org/mailman/listinfo/devel].

Or say hi to us on the project blog [http://openhatch.org/blog], Identi.ca [http://identi.ca/openhatch], Twitter [http://twitter.com/openhatch], and Facebook [http://facebook.com/pages/OpenHatch/108578243652].


Chat with us on IRC

You can usually find us on #openhatch on irc.freenode.net - a friendly place to say hi and get answers to questions interactively.

If you don’t know how to use IRC, you can use our installation guide [https://openhatch.org/wiki/OSCTC/Laptop_setup#Goal_.231:_install_an_IRC_client] or just click on this link to a web
chat interface [http://webchat.freenode.net/?channels=#openhatch].

Also, there’s an excellent FAQ at botbot.me [https://botbot.me/irc-guide/]

Are you trying to figure out who everybody is? Many of the people are part of
the OpenHatch project [http://openhatch.org/projects/OpenHatch].




Quick start

/server irc.freenode.net

/join #openhatch

/nick newnickname

/me waves hello

# The /me is an action message.
# Type /me 'does anything'
# Example:  /me waves hello
# What it looks like: * bossmom waves hello





More details: http://www.ircbeginner.com/ircinfo/ircc-commands.html







          

      

      

    

  

    
      
          
            
  
Login Team

The Login Team is the people who can SSH into the main deployment of
OpenHatch.

In order to subscribe to the monitoring-private email list or have push access
to Github, you have to be part of the login team.


Current members


	Jack Grigg (pythonian4000)


	Asheesh Laroia (paulproteus)


	Jessica McKellar (jesstess)


	John Morrissey (jwm)


	Karen Rustad (aldeka)


	Elana Hashman (ehashman)







How to join


	Email asheesh at asheesh.org…


	Include a copy of the OpenHatch Servers Access & Usage Policies at
Login Team Agreement


	“Digitally sign” it by typing your name at the end of it (and/or PGP sign,
if you like)


	(Here’s a summary of the document: You agree to be nice, respectful, and
communicative. Asheesh can kick you out of the login team, but he will also
try to be nice, respectful, and communicative. If you find a security hole,
or otherwise discover a bad problem, you will contact other people and let
us know. If you take reasonable actions like trying to diagnose the
security problem, that’s cool. If you exploit a security hole to do
something that you are actually permitted to do, then that’s pretty smart
and crafty of you, and you should tell you did it so we know how cool you
are.)






	Then if Asheesh agrees you should be on it, he’ll let you on. You should hear
back within four days.







What you get, when you’re on the login team


	SSH key access to the deploy user account on linode and linode2.


	When we have a VM hosted by OSU OSL, you’ll get a personal account and sudo
permission.


	SSH key permission to push to the Github openhatch/oh-mainline repository.







How to deploy new versions


	See Deployment










          

      

      

    

  

    
      
          
            
  
Login Team Agreement


How to use this document

If you want to become part of the Login Team, you have to
take this document, copy it into an email, and send it to asheesh at
asheesh.org.

Inversely, this document serves as a record to visitors to the site: you can
read it to find out what have people agree to in order to get shell access.

—




OpenHatch Servers Access & Usage Policies

Version 1.1

Version 1.0 of the OpenHatch Servers Access & Usage Policies becomes effective
on April 30, 2011. Version 1.1 fixes some trivial typographic errors.


Introduction

This document describes the policies for people who have direct (e.g., SSH)
login access to any account on the OpenHatch Servers. When you are granted this,
you become part of a group of people we call the Login Team.




General statement

Privilege

Access to OpenHatch servers is a privilege, not a right or a commercial service,
and Asheesh Laroia and the Login Team reserve the right to revoke this privilege
at any time, without prior notice. An explanation will be given within 48 hours.
Asheesh promises to try to have a reasonable conversation with you about the
loss of access, including (if you ask for it) the possibility of gaining this
privilege again.

Guarantees

There is no guarantee of service. Although the Login Team will do its best to
assure that everything functions perfectly, they can’t give any guarantees.

Penalties

If someone violates the rules set out in Policies section of this document, as
Asheesh’s sole discretion, then Asheesh will revoke that person’s access. See
also the “Privilege” section.




Rules and Guidelines

The following section defines OpenHatch’s Rules and Guidelines.


	The rules are binding and may not be violated.


	The guidelines specify rules that may be violated if necessary but we would
rather one did not.





The Rules

You will not carry out any willful, deliberate, reckless or unlawful act,
interfere with the work of another developer or jeopardize the integrity of
data, equipment, systems programs, or other stored information.

You will not use the OpenHatch servers for financial gain or for commercial
purposes, including consultancy or any other work outside the scope of official
duties or functions for the time being, without specific authorization from
Asheesh to do so.

You will not use OpenHatch servers for any unlawful activities whatsoever.

You will not deliberately interfere with or alter the integrity of the OpenHatch
servers, by doing any of the following:


	permitting another individual to use your shell login account;


	impersonating other individuals in communication without their permission;


	attempting to capture or crack passwords or encryption, unless you have
permission from the account-holder to do that;


	destroying or altering data or programs or anything belonging to other users,
unless you are you doing something a user has explicitly permitted you to do.




You will not restrict or deny access to the system by legitimate users.

You will not transmit threatening or harassing materials.

When you copy private data onto a non-Login Team computer, for example user
passwords that you copy through a MySQL dump, you promise to keep them safe on
the computer you copied them to. You will try to delete them reasonably quickly,
and should try to use the public data snapshots wherever possible.

You do not have to delete session IDs that come to you via the
monitoring-private list, but you should not share them (because sharing session
IDs can permit people to impersonate users).

You will not use OpenHatch servers in a manner which constitutes net abuse.

You will not allow any bot net or other criminal infiltration of the OpenHatch
servers through carelessness or abuse, to the best of your ability. If you think
you found or created a security hole, you will tell Asheesh. He promises to be
nice to you in his acknowledgment of the issue.




The Guidelines

Processes: Do not run any long running process without the permission of
Login Team. If you come up with cool ideas of for processes to run, you should
have a conversation with the rest of the Login Team first. Running servers of
any sort (this includes IRC bots) without prior permission from Login Team is
also forbidden. Avoid running processes that are abusive in CPU or memory. If
necessary Login Team will clean up such processes without warning.

WWW pages: In general, web space on the OpenHatch Servers is provided
specifically for the purpose of serving the webapps of OpenHatch itself, whose
goal is to help OSS projects get new contributors. Using your login account to
create private ‘vanity’ pages on OpenHatch Servers is discouraged. (Obviously,
the OpenHatch web app itself provides a way to create vanity pages; you may
use that.)

Homedir: If you receive an email notification that your homedir is large and
that more free space is needed then please promptly take action. The Login Team
may find it necessary to clean up without warning.

Tunneling: If you need to use the OpenHatch servers as the end of a tunnel,
like an SSH tunnel, try to talk to Asheesh first to make sure your use is okay.
(If you had to do it in a hurry, try to tell him afterward.)

Mail/News: Don’t use the OpenHatch servers for reading email. If you want to
forward your email address somewhere else, that’s fine; create a .forward file.
If a developer becomes unreachable for a prolonged time, his/her accounts, data
and mail forwarding/filtering/etc may be disabled until the person reappears.

I HAVE READ AND AGREED TO THE FOLLOWING TERMS AND CONDITIONS

(Erase this line, and type your name here, if you agree)











          

      

      

    

  

    
      
          
            
  
Web Analytics Team

This is the set of people who have access to look at aggregate logs of
our page views. Because we give people access to aggregated
information, we expect it not to be personally identifiable
information, so the privacy implications should not be huge.


Purpose

When design or code or documentation or publicity or other
contributors are thinking about what changes to make to the website,
it is often very helpful to be informed by data about how people are
using the site.




Who may join, and how to join

Any reasonably trustworthy contributor (such as: people who have shown
up to the #openhatch IRC channel and seem to get along fine with other
members; people who have contributed code to the project; or so forth)
is welcome to join.

We might take your access away if you seem to not have been using it
for one month. That is just constant housekeeping, not because we have
stopped trusting you. If we do that, we will try to notify you (but
might forget to), and you are free to ask for it back.

To join:

Email devel at lists.openhatch.org with a brief message, such as:

I’d like to join the Web Analytics Team because I want to know more about
__________ and think that our aggregate page logs will help with that.

You should expect someone to reply to you within about 4 days with a
yes or a no.




Technology

Right now, we use Google Analytics. You can log in here:


	https://www.google.com/analytics/




People on the Login Team are permitted to have “Manage”-level access.

People on the Web Analytics team are permitted to have “Edit”-level
acces or “View”-level access.

The team isn’t technology-specific. If we add another web analytics
tool, we should give these people a similar level of access.




Members

Manage level:


	Asheesh Laroia




Edit level:


	Britta Gustafson


	Susan Tan










          

      

      

    

  

    
      
          
            
  
Domain Team

The Domain Team is the team of people who can modify settings of the
openhatch.org domain, such as what IP address it points to. The team
also has the same power for all openhatch-owned domains.

Since the team has somewhat limited membership, one goal is to be
responsive to requests from non-members who want to add or edit our DNS
settings.


Membership

It is difficult to delegate access very widely for this, as anyone
with control over the openhatch.org DNS can probably gain any other
privilege they want. Membership is open to Login Team members or Board
members who merit a special degree of trust.

Current members:


	Asheesh Laroia (paulproteus)


	Shauna Gordon-McKeon (shauna)







How to join

Email asheesh at asheesh.org with at least one sentence to answer why
you need domain/DNS-level access for the thing you’re working within
OpenHatch.

You should expect a response within 4 days. If you don’t get one, feel
free to send another email that is CC: devel@lists.openhatch.org.




What you get, when you’re on the team


	CloudFlare DNS password. (Username is asheesh@openhatch.org for now.)







Information useful to members


	openhatch.org DNS is hosted by cloudflare.com.


	The openhatch.org domain is configured in gandi.net. Currently that
still uses Asheesh’s personal account, but we should change that.


	CloudFlare sends emails to asheesh at openhatch.org. We should
change that.










          

      

      

    

  

    
      
          
            
  
Collaboration tools

This document lists some communication and collaboration tools that
people in the OpenHatch community use in order to work together
effectively. The purpose of this part of the documentation is to help
people who are new to these tools quickly become oriented, and to help
us share tips on how to use these tools well.


Freenode IRC

Developers, event organizers, documentation writers, bug filers, and
basically everyone in the OpenHatch community sometimes uses IRC as a
real-time chat system.

See https://openhatch.org/wiki/Contact to read more about how to join
us there.




Email lists

We use the email lists at http://lists.openhatch.org/ (hosted by the
free-software Mailman package).

These lists are typically publicly archived, and typically are open
for anyone to join. Archives are currently performed by the
“pipermail” software tool, which is widely-used but not universally
loved.




Etherpad

Etherpad is a real-time, rich-text capable, free software text editor.

People discussing a topic on IRC often use it to think aloud so they
can write more than a few sentences at a time, and to get feedback on
an idea that is a paragraph or longer.

The Etherpad software is widely available; we typically use the
websites running Etherpad hosted by Mozilla or Wikimedia. To create a
new Etherpad document, one procedure is:


	Think up the name for the document (for example, oh-just-testing)


	Visit https://etherpad.mozilla.org/oh-just-testing


	Wait for it to ask you, “Do you want to create this pad?” and answer yes.




This way, you can choose the name of the pad, rather than accepting
the default behavior of having a randomly-generated name.

We typically treat Etherpads as temporary storing places for
documents, since it is easy to misplace the link to the
document. Therefore, it’s usually a good idea to export a document as
HTML from within the Etherpad interface, and send that HTML document
to the devel list.




Google Docs

Google Docs is a free-of-cost collection of collaboration tools for
writing text documents, spreadsheets, and other such things.

We sometimes use that, too.







          

      

      

    

  

    
      
          
            
  
Quotes database

This document explains our IRC quotes database.


The URL to the quotes DB

http://boiling-refuge-7775.herokuapp.com/




How and when to submit a new quote

Let’s say something interesting happens on IRC. For example, if your
friend stops by the IRC channel and says something amusing:

<friend> hey, I just realized
<friend> oh-mainline... the oh starts for OpenHatch...
<friend> but it's also, like -- oh! mainline!





and you want to put it in the IRC quotes database. Here are the steps
you take:


	Copy the text to your clipboard on your computer.


	Visit the quotes database at http://boiling-refuge-7775.herokuapp.com/.


	Click submit quote


	Enter your quote in the DB, and click Submit


	See the glorious “Your quote has been submitted and is now pending
approval!” message


	Send a private message to paulproteus to ask them to approve it.







How to approve quotes


	Visit the login page at
http://boiling-refuge-7775.herokuapp.com/?m=userlogin


	Log in (if you need an account, ask paulproteus)


	Visit http://boiling-refuge-7775.herokuapp.com/?m= and see the list of quotes.


	Notice that some are very pale! Either approve or delete them.


	To moderate, visit http://boiling-refuge-7775.herokuapp.com/?m=panel
and enter the 4-character short name into the permaid box. Choose either do_approved or do_deleted to mark it respectively as approved or deleted.










          

      

      

    

  

    
      
          
            
  
Ticket tracking

This document explains how we handle inbound email to the OpenHatch organization.

Our “ticket tracker” is a tool we use to reply to emails people send to OpenHatch. The “ticket tracker” is a fairly internal tool, although if you’re excited about getting involved, we welcome you! Crucially, it is distinct from our “bug tracker,” which tracks issues in the open source code of the OpenHatch project. By contrast, the ticket tracker helps us keep track of email conversations.


The URL to the ticket tracking site

http://tickets.openhatch.org/rt/




Our normal workflow

Somebody sends an email to hello@openhatch.org. By default, this ticket goes into the “General” queue and is not assigned to anybody.

To move the conversation forward:

A ticket responder can reply by email with a helpful message, which changes the ticket status from “new” to “open”, or they can write a reply specifically to support-comment at tickets.openhatch.org to write a message only viewable by ticket responders.

On the RT website, a ticket responder can click “reply” to reply with a helpful message, or they can click “comment” to write a message only viewable by ticket responders.

To keep the tickets organized:

On the RT website, go to a ticket and visit the “basics” menu option (in the grey bar) to put the ticket in the appropriate queue, assign the ticket to somebody, and assign a new status to the ticket.

When a ticket is resolved, we should assign it the status “resolved”.

In the future:

We plan to also be able to assign queues, ownership, and statuses by email (using CommandByMail [http://search.cpan.org/dist/RT-Extension-CommandByMail/lib/RT/Extension/CommandByMail.pm]). We have a ticket filed with the hosting provider to set this up.

Workflow notes:

There are some slight differences from the default RT workflow, which might be worth highlighting in case you’re comparing this with past RT experiences or the official docs:


	We’ve disabled the “Auto-Reply to requestor” scrip. We thought this seemed impersonal; additionally, Asheesh was concerned it would cause us to send replies to spam we receive.


	We’ve disabled the scrip that causes the requestor to receive an email when the ticket is marked as “resolved”. We thought this seemed impersonal.







Request Tracker Admin Team

These people have “privileged” accounts in RT and the password to the separate “root” account within RT:


	Britta


	Asheesh


	Shauna







How to help out

If you want to help answer people’s questions that they email to OpenHatch, please email us and we’ll give you an account with some degree of appropriate privilege to do that. We haven’t configured this yet, but we’re excited to figure it out!




hello@ migration

(This section written on Sun Feb 16. Hopefully, it will go away by the end of February.)

Right now, hello at openhatch.org forwards to a bunch of people.

In the near future (~1 week from now), we’ll turn that forwarding off. People who were on the hello@ alias can get something similar to what they used to have by requesting an RT account.

The best way to request an RT account is to email hello@, as we already have things set up so that emails to hello@ will create a ticket.




Importing past mails

(This section written on Sun Feb 16. Hopefully, it will go away by the end of March.)

We haven’t imported any past threads or emails yet.

For bulk import of historical archives, Asheesh hopes to get to this in the future (the next 2 to 6 weeks). He’ll make an “archive” queue that hopefully contains one “ticket” per email thread. That way, new email helpers can read the archives within RT.

If you want to reply to a hello@ mail that isn’t in RT yet, try to use the following workflow:


	Forward the most recent mail in the thread to support at tickets.openhatch.org.


	Modify the ticket so the person who sent it is the “Requestor.”


	(Optional: Move it into the appropriate queue.)


	Reply to the ticket via your email, now that it has a ticket number.




That’s a bit cumbersome. Sorry about that.




How the ticket tracker is administered


	tickets.openhatch.org points at an IP address of a VM run by Gossamer Threads.


	They are generously donating their hosted RT service, and for this, we plan to thank them on the OpenHatch sponsors page.


	From what I understand, we have a virtual machine that they administer. We can file support tickets with them, and we can also FTP into the machine and make changes if we want.


	hello at openhatch.org forwards to a few email addresses, including bountyarchive at rose.makesad.us; a procmail rule there forwards the email further into our RT instance. This is hackish and should be replaced in the future. (This remark written on 2014-02-16.)







Further thoughts

Maybe it would be interesting for us to CC: the ticket tracker on emails to sponsors, generally. That way, we’d have a shared archive.







          

      

      

    

  

    
      
          
            
  
How to run an OpenHatch sprint

This is a brief set of steps for anyone interested in getting people
together to improve the OpenHatch codebase or web app project. It is
based on The In-Person Event Handbook [http://opensource-events.com/]. We call these “sprints”,
after the terminology at pythonsprints.com.


Step 1: Figure out what you want to accomplish at the sprint

Some ideas for this can be found in the “What do you want to
accomplish at this event?” section of The In-Person Event Handbook [http://opensource-events.com/].




Step 2: Pick a date & venue

The date and venue go hand-in-hand, as you might have to reserve
space. See the Bay Area Debian Shotgun Rules [http://bad.debian.net/shotgun_rules.txt] for good things to
think about. Power and wifi and laptop-friendliness are especially
important.




Step 3: Find funding (optional)

As of the time of writing (December 2013), the Python Software
Foundation is happy to sponsor food. Visit the Python Sprints Call
for Applications [http://pythonsprints.com/cfa/] for information on how to apply. It’s nice to be
able to say that food is sponsored, so people are more likely to
attend.

In Asheesh’s opinion, if food sponsorship is asked-for but not yet
confirmed, it’s fine to say in the announcement email that it’s
pending confirmation.




Step 4: Figure out the maximum number of people we can support

Given the goals you set, perhaps we only have mentorship resources
available for 4 newcomers or so. In that case, it’s best to ask people
to RSVP to you, perhaps by creating an event page on eventbrite.com or
by asking people to send a personal email to the event organizer.




Step 5: Get the word out

You should definitely send an email to the OH-Dev mailing list [http://lists.openhatch.org/mailman/listinfo/devel]. It’s
also a good idea to send (even if brief) personal emails to OpenHatch
contributors in your city.

Write your announcement in the style recommended by the Bay Area Debian
Shotgun Rules [http://bad.debian.net/shotgun_rules.txt].

Consider also Tweeting about it, or getting the pythonsprints.com blog
to send your announcement, or sending an announcement to the Python
Meetup in your city. (It is OK not to do that if you suspect it would
result in more RSVPs than the event can support.)




Step 6: Read the In-Person Event Handbook and follow its instructions

Now is a great time to read the rest of The In-Person Event
Handbook [http://opensource-events.com/] and think about follow-up processes, validating
documentation, and the preferred modes of communication for attendees
physically at the sprint.




Food sponsorship logistics notes

Typically, the Python Software Foundation (or any food sponsor) wants
to see an itemized receipt with the food and drink items on it. If the
sprint is at a venue where people typically order one item at a time,
you can simplify life by leaving a tab open and having just one person
pay the bill. Then that person can be the one to get reimbursed.

If a person with an OpenHatch Foundation card is around (such as
Asheesh or Shauna), a good idea is to have that card be the one that
pays the tab. Then the owner of that card is the only one who has to
deal with the reimbursement logistics.







          

      

      

    

  

    
      
          
            
  
THANKS


	The Free Software projects that we depend on - see the vendor/ directory for
a list.


	Our contributors and consultants are listed at
http://openhatch.org/projects/OpenHatch. If you’ve helped to create
OpenHatch, you deserve to be listed there!


	The fantastic people who have helped us:


	Nelson Pavlosky [http://skyfaller.net]


	Shotput Ventures [http://shotputventures.com], who mentored and funded us in the summer of 2009.


	The Institute for Security, Technology, and Society [http://ists.dartmouth.edu] and the
Neukom Institute [http://dartmouth.edu/neukom], both at Dartmouth, who sponsored Parker [http://madebyparker.com]
Phinney [http://openhatch.org/people/pyrak]’s internship during the Dartmouth winter 2010 term.


	Google Summer of Code [http://code.google.com/soc/], who sponsored John [http://jstump.com] Stumpo [http://openhatch.org/people/stump]’s
internship during the summer of 2010.


	Jerold Camacho [https://twitter.com/korapsyon], who reported a cross-site scripting issue in 2013.






	See CREDITS for other files we use.








          

      

      

    

  

    
      
          
            
  
Project Overview

OpenHatch is an effort to help people get involved in free, open source software communities.

Our main website, openhatch.org [http://openhatch.org], contains tools to find open source projects you can join, interactive lessons (“missions”) to learn the skills needed to get involved, and a place to say what projects you work on or want to help.

We keep the code that runs the website on Github in the repository oh-mainline [https://github.com/openhatch/oh-mainline].  The documentation
can be found at readthedocs.org [http://openhatch.readthedocs.org/].

The website is a Python+Django app with jQuery and CSS and HTML on the frontend, and aims for high test coverage (mostly succeeding) and high usability (though it is not there yet).  You can read more details about how the code is structured in this document [https://github.com/openhatch/oh-mainline/blob/master/LAYOUT], which we’re working to improve.

The best way to contact us about the website is to send an email to our contributors list [http://lists.openhatch.org/mailman/listinfo/devel] or find us at #openhatch on irc.freenode.net.  (Other ways to contact us [http://openhatch.readthedocs.org/en/latest/community/contact.html].)

Other elements of the OpenHatch project:


	The website is also powered by the “OpenHatch bugimporters,” a separate Python-based codebase to download bugs from open source projects’ bug trackers, based on Scrapy.


	code: https://github.com/openhatch/oh-bugimporters


	docs: http://oh-bugimporters.readthedocs.org/


	main contact: http://lists.openhatch.org/mailman/listinfo/devel or #openhatch on irc.freenode.net






	The OpenHatch blog, a WordPress-based site where the community writes about great things going on in outreach and diversity


	view it: http://openhatch.org/blog/


	read about its theming: http://openhatch.readthedocs.org/en/latest/internals/wordpress.html


	main contact: http://lists.openhatch.org/mailman/listinfo/publicity






	The OpenHatch wiki, where we store notes about events, future and past tech plans, and other general useful bits of text.


	view it: https://openhatch.org/wiki/


	read about its theming: FIXME, undocumented mostly


	main contact: http://lists.openhatch.org/mailman/listinfo/publicity or #openhatch on irc.freenode.net






	Open Source Comes to Campus, a series of in-person outreach workshops, especially with Women in CS groups, to help university and college students get involved in free software


	info: http://campus.openhatch.org/


	main contact: hello@openhatch.org


	planning list: http://lists.openhatch.org/mailman/listinfo/osctc-planning






	Outreach events such as the Boston Python Workshop for women and their friends that are “affiliated” with us.


	General info: https://openhatch.org/wiki/Events/Affiliated


	main contact: http://lists.openhatch.org/mailman/listinfo/events






	We host email lists for other groups working on efforts also aligned with our goals of diversity and outreach.


	Big list of email lists: http://lists.openhatch.org/mailman/listinfo


	Sample lists you’ll find here: Women in Free Software India; Organizers of Columbia University Open Source Comes to Campus; etc.






	General thinking about how free software can be improved:


	For everyone: http://lists.openhatch.org/mailman/listinfo/peers


	Specific planning for the OpenHatch Board: http://lists.openhatch.org/mailman/listinfo/board and for 2014 fundraising http://lists.openhatch.org/mailman/listinfo/fundraising-2014








Projects that are sort of being “incubated” by OpenHatch, in that they’re not fully ready yet, but are promising and exciting:


	Oppia-based rewrite of the training missions:

	
	more about Oppia: https://code.google.com/p/oppia/


	code: https://github.com/openhatch/oh-missions-oppia-beta


	main contact: Tarashish (sunu) on http://lists.openhatch.org/devel or #openhatch on irc.freenode.net






	“Greenhouse,” a project to help open source projects greet new contributors:

	
	code: https://github.com/openhatch/oh-greenhouse


	main contact: Dave (daveeloo) on http://lists.openhatch.org/devel or #openhatch on irc.freenode.net


	Other lists used by the project: http://lists.openhatch.org/mailman/listinfo/greenhouse and http://lists.alioth.debian.org/mailman/listinfo/welcome-team












          

      

      

    

  

    
      
          
            
  
Key Features of openhatch.org

This document lists features that the openhatch.org site is supposed
to have. These are the guiding priorities for the maintenance and
development community.

The “List of features” section below is supposed to state high-level
goals that site visitors should expect to achieve when using the
website.

To the extent that our work together on the OpenHatch codebase
provides value to the world, I think it makes sense to think about
what users can expect from OpenHatch.


List of features


OpenHatch Friends and Fans

As a general fan of OpenHatch, I want to learn more about OpenHatch’s activities and the organization (including how to get in touch, and how to get involved) by visiting the front page of the website.




Site visitors

As a site visitor, I want to be reassured that people actually use the site.




Open Source Contributor

As a prospective open source contributor, I want to visit the
OpenHatch site and be able to find ways to get involved in open
source.


Note

Implementation detail: Right now we focus on helping
people find “bitesize” bugs in open source projects.

We’ve gotten feedback that “bitesize bugs” are OK, but that we could do a better job of contextualizing the bugs as being within a particular project, and that many visitors are motivated by the open source project they’d contribute to first, and the task they’d do second.



As a prospective open source contributor, I want to visit the OpenHatch website and learn skills related to getting involved in open source.


Note

We achieve this via the training missions.



As an open source contributor, I want to visit the OpenHatch site and make a profile listing the projects I’ve contributed to.




Open Source Project Maintainers

As an open source project maintainer, I want to visit the OpenHatch
site and be able to configure my project to show up in collection of
bitesize bugs one can browse.

As an open source project maintainer, I want to provide a friendly
face for my project on the OpenHatch site, so that prospective
contributors feel welcomed into the project and reach out to me as
needed to become contributors.









          

      

      

    

  

    
      
          
            
  
Getting Started

To get your own instance of OpenHatch running, follow these steps and then get
in touch with us.

The code is written in Python. It uses the Django toolkit and tries to stick to
good software testing practices. If you have Python experience, you should be
able to get hacking pretty quickly even if you don’t know Django or testing.


First steps


Getting the source code

OpenHatch source code can be seen through a web interface at
https://github.com/openhatch/oh-mainline

To make contributions, you will need to do acquire the source code of www.openhatch.org. Complete these one-time tasks in the following
order:



	Make a new Github account on https://www.github.com if you don’t already have one.


	Fork the oh-mainline Github repository located here at https://github.com/openhatch/oh-mainline. Click on the fork button located on the upper  right corner of the project page. Now you have your own personal copy of the oh-mainline repository.


	Install git the version control system. If you have already done so, skip to the next step.


	Clone your personal copy of the oh-mainline repository to your computer by typing this command into your terminal

$ git clone https://github.com/<YOUR_GITHUB_USERNAME>/oh-mainline.git












It will take up to five minutes, depending on your Internet connection. it’s
kind of a big repository. (90 megabytes, or so.)




Installing and running a local development site

Once you have the repository, read the Installation documentation
or open up the oh-mainline/docs/getting_started/installation.rst file
in any text editor and follow the instructions.

Read it, and follow the few short steps to getting your local site going. It
should take about 5 minutes.






Next steps


Get in touch

We really recommend that you get in touch with us. (It’s not quite mandatory,
but we’ll all be happier if you do)



	Join the Devel mailing list [http://lists.openhatch.org/mailman/listinfo/devel] and say hello.


	Visit the #openhatch IRC channel in freenode.







OpenHatch holds development meetings on IRC; our goal is to hold these meetings weekly. The meetings are announced on devel@lists.openhatch.org. Please join us on IRC and share your ideas or ask questions.




Read more documentation

Before you start hacking OpenHatch, we strongly advise you to watch
Learning new codebase [http://pyvideo.org/video/40/djangocon-2010--learning-a-new-codebase] talk by Justin Lilly given during DjangoCon 2010 [http://pyvideo.org/category/23/djangocon-2012].

You can find more tips about hacking OpenHatch in the Category:Hacking_OpenHatch!

You can find things to work on by browsing our issue tracker [https://github.com/openhatch/oh-mainline/issues] or asking us!




Start contributing!

We mark issues that are particularly good for new contributors with the
“bitesize” keyword on our issue tracker. You can find the open easy issues here [https://github.com/openhatch/oh-mainline/issues?q=is%3Aopen+is%3Aissue+label%3Abitesize].

If you find an issue you like and it isn’t assigned to anyone, assign it to
yourself and start hacking. If it is assigned to someone already, but it looks like they
haven’t gotten around to working on it, leave a note on the ticket saying that
you are interested in taking it (you can also try asking on IRC).

When you are ready to submit a contribution for an issue, follow the guidelines at
How we handle contributions.

If you ever feel like you are getting stuck or could use some design feedback,
don’t hesitate to ask for help on the IRC channel, on the devel mailing list,
or on the issue ticket. Attending the weekly development meetings on IRC is a
great time to ask for help or recommendations on issues to work on.






Getting unstuck


Doing searches:

When doing searches for particular keywords in the GitHub repository, the “vendor” directory will most likely return lots of hits, making your search more difficult.

GitHub provides a little known method for excluding specific directories from the search. In the Search textfield, enter:


YOUR_SEARCH_WORD -path:vendor








The -path:vendor parameter will exclude the vendor directory from your search and will maximize the probability of getting meaningful hits.

It is also possible to do a search locally from the command line, by going to the mysite/ directory and using:


git grep YOUR_SEARCH_WORD








That will limit the search to your local code.









          

      

      

    

  

    
      
          
            
  
Installation

OpenHatch is currently designed to run on Python versions 2.6.0 to 2.7.8.
OpenHatch site does not currently support Python 3 or above. We hope to do
so in the future.


Note

These installation instructions are tested nightly on Ubuntu 12.04
and Debian stable. Last verified on Windows XP 11/7/2013,
Mac OS X 10.9.5 October 29, 2014, and Mac OS X 10.10 December 15, 2014.




Overview

This repository contains (primarily) Python code written on top of Django
and other Python modules. We bundle a copy of all of the essential
dependencies for oh-mainline to run so that you can get started immediately
(there is no need to download and configure additional software from other
sources).

It should take you about 15 minutes to get the OpenHatch site running locally
on your computer.

Here are the basic steps you’ll follow for installation:


	Open a command prompt


	Get the code from the GitHub repository


	Set up the database


	Run the site




After running your own instance of the OpenHatch website, you can play
with the code from an interactive shell on your computer.

If you want to work on core backend features, like the bug importer,
or let your local site rescale images, please see Advanced Installation
documentation to learn about optional dependencies and automated testing.




Essentials


Open up a command prompt


Note

Understanding how to open a command prompt for your operating
system is an important prerequisite to master before continuing
with the remaining installation instructions.



For the rest of these instructions, you have to open a command prompt:


	On a Linux or similar system, find a program with “terminal” or
“konsole” in the name. Run it.


	On a Mac, click the search icon in the top-right of the screen and
search for Terminal. This should find the Terminal program, stored in
/Applications/Utilities. Run it.


	On a Windows computer, you’ll need to use Git Bash. To do so, download and
install the .exe at this link [http://openhatch.org/missions/windows-setup/].
(It will ask you a bunch of questions.  You can accept the defaults.)
Once that is installed, launch Git Bash by going to:
Start -> All Programs -> Git -> Git Bash







Get the code from the GitHub repository

If you already have an oh-mainline directory on your computer, then
you already have the source code. You may skip to the next step,
Set up the database.

If you’re reading this installation instruction file on the web,
then you will need to clone the repository from GitHub to your local
computer.

Step 1: Open a command prompt on your computer

Step 2: Create a new directory on your computer:

mkdir localhatch





Step 3: Change to the new directory:

cd localhatch





Step 4: On your personal Github account, fork the OpenHatch repository at
https://github.com/openhatch by clicking on the “Fork” button on the right-hand side.
Github now takes you to your forked repository of the OpenHatch upstream repository.

Step 5: On the command prompt, clone the repository from your fork of the GitHub OpenHatch code to your local computer:

git clone https://github.com/<YOUR_GITHUB_USERNAME>/oh-mainline.git





If your commands are executed successfully, you may continue to the next
step.


Note

For most Django projects, you would need to install the dependencies
at this point (using pip install -r requirements.txt), but for
the OpenHatch project, these packages have been bundled for your
convenience in the vendor directory, so they don’t need to be
installed separately.






Set up the database

Before you run the commands in the this section, make sure you have
changed your present working directory to the oh-mainline directory.:

cd oh-mainline





Your local OpenHatch site will store data in a SQLite database.

Run this command to create the database and add tables for our dependencies:

python manage.py syncdb --migrate --noinput






Note

We have to pass –noinput to request that Django not ask you
questions. This is due to a bad interaction between Django’s superuser
creation system and our custom profiles. –migrate creates an empty
database, with zero users and zero projects, ready for you to fill with data
as you use your local version of the site. If you want your site to have a database filled
with data like what is on the main OpenHatch.org site, you can import
a data snapshot. See Importing data snapshots for more info about
that.)



This will print out lots of text. Once all of the text is printed, you
should see something like the output listed in Output Samples below.
Afterwards, your database tables should be ready. You’re ready to run the
site.

If you are using Windows and do not have Python installed, you may get the
error “Python: command not found.”  Follow these instructions [https://openhatch.org/wiki/Boston_Python_Workshop_8/Friday/Windows_set_up_Python]
to install Python.




Run the site

Before you run the commands in the this section, make sure you have
changed your present working directory to the oh-mainline directory.

Run this command which will start a web server locally on your computer:

python manage.py runserver





As long as the “runserver” is running, you can visit your local version of
the OpenHatch site in a web browser. So, try surfing to:

http://localhost:8000/


Note

Your local version of OpenHatch does not contain any user data in
its SQLite database. You may add users manually through the user
interface. If your development needs require a large amount of
prepopulated data, you can find information about Importing data
snapshots in the Advanced Installation documentation.






You’re done

Hooray! That’s it for the essentials. You have everything you need to
get the site going, and to start making changes.

Now is a good time to find us on IRC or the email list and say hello!
We can help you make the changes you want to. Contact Us!

If you want to read about some optional dependencies, open up
Advanced Installation documentation. You can also read about how to
maintain your local site in the Maintenance documentation.






Output Samples

Here is a sample output from python manage.py syncdb --migrate --noinput:

Synced:
  > ghettoq
  > django.contrib.auth
  > django.contrib.contenttypes
  > django.contrib.sessions
  > django.contrib.sites
  > django.contrib.webdesign
  > django.contrib.admin
  > registration
  > django_authopenid
  > django_extensions
  > south
  > django_assets
  > invitation
  > voting
  > reversion
  > debug_toolbar
  > sessionprofile
  > model_utils
  > djkombu
Migrated:
  - mysite.search
  - mysite.profile
  - mysite.customs
  - mysite.account
  - mysite.base
  - mysite.project
  - mysite.missions











          

      

      

    

  

    
      
          
            
  
Testing Basics

OpenHatch strives to follow best practices for testing. One
common practice in the Python community is Test Driven Development (TDD).
In TDD, a developer will write a test for a new feature before creating
the feature’s source code.


Running the OpenHatch test suite

You may run the test suite to see if all tests pass before you begin
making changes to the code. To run the test suite,:

python manage.py test





The test suite begin running all of the tests and will display the test
progress in the console window.


Running the test suite without warnings

You may run the test suite and turn off warnings, such as “deprecation
warnings”, being output to your screen. To run the test suite without
warnings,:

python -Wignore manage.py test





The test suite will display its progress on the console but will not display
any warnings.




Running a subset of tests

If you are working on a particular area of the source code, you may find
it helpful to run a subset of the tests. You may pass an argument after
the python manage.py test command.

Currently, you may pass one or more of the following arguments: account,
base, missions, project, search, and customs. For example,:

python manage.py test missions





will run all the tests related to the OpenHatch missions.


Controlling detail of test output

You can use --verbosity or -v to specify the amount of notification and
debug information that should be printed to the console.


	0 means minimal output.


	1 means normal output (default).


	2 means verbose output.


	3 means very verbose output.




For example,:

python manage.py test -v2





will run all the tests and display a more verbose output.








Additional testing information

The Internals section of this documentation contains more detailed information
about the test suite, advanced testing, and continuous integration.

If you’d like to learn more about testing, we strongly recommend going through
Ned Batchelder’s [http://nedbatchelder.com/] blog post Getting Started Testing [http://nedbatchelder.com/text/test0.html].







          

      

      

    

  

    
      
          
            
  
Documentation Basics

You can read the most up to date documentation online at this link:
http://openhatch.readthedocs.org/en/latest/index.html


Source files

The documentation source files can be found in the
docs/ [https://github.com/openhatch/oh-mainline/tree/master/docs]
folder of the oh-mainline repository:
https://github.com/openhatch/oh-mainline/tree/master/docs




reStructuredText and Sphinx

The documentation for OpenHatch is built using Sphinx and deployed at
readthedocs. You can learn more about the Sphinx, which uses
reStructuredText (.rst files) format [http://docutils.sourceforge.net/rst.html],
and
Sphinx deploy commands [http://sphinx.readthedocs.org/en/latest/index.html].




Style

We encourage you to help improve the OpenHatch documentation. We have a
Documentation Style Guide which gives an overview of our basic
documentation style and guidelines.




Changing or Adding Documentation

Before making any changes, we recommend taking a moment to read the
Documentation Style Guide.


Making changes to documentation via pull request

To alter the documentation, you’ll want to clone the github repository [https://github.com/openhatch/oh-mainline].  (Not sure what cloning
is?  Read our version of Git Basics. [https://openhatch.org/wiki/Git_Basics])

Once you’ve got a local copy, you can edit the files in the docs/ [https://github.com/openhatch/oh-mainline/tree/master/docs] directory to make changes.  You may find the official Sphinx reStructuredText
primer [http://sphinx-doc.org/rest.html] useful for that.

To see the changes rendered locally, you can run the render_docs.py script found in the tools folder of the oh-mainline repository:

python tools/render_docs.py





You will find the documentation rendered into html format inside the docs/html folder of the oh-mainline repository.  You can view it in your
browser and check that you like your changes before submitting them.  (Again, see Git Basics [https://openhatch.org/wiki/Git_Basics] for
help submitting your changes.)

Once you submit your changes as a pull request and they have been merged by a maintainer, they will appear in the openhatch/oh-mainline repository.
The openhatch.readthedocs.org/ files will update automatically via a github web hook.


Note

If you’ve create a new file or edited/deleted a “toctree”, you may get an error “WARNING: document isn’t included in any toctree”.  This means
a file is not referenced by a table of contents anywhere.  Consider adding it to one.  See Sphinx guide [http://sphinx-doc.org/markup/toctree.html] or reference.)






Making changes to documentation via readthedocs/Github editor

If you’re having trouble navigating the documentation by opening and editing files locally, you can also try paging through the readthedocs.
Each page should have an ‘Edit on Github’ link in the righthand corner.  When you click this link, Github will automatically create a fork
of the project for you (if one does not automatically exist).  Once you finish editing, make sure to submit a pull request.









          

      

      

    

  

    
      
          
            
  
How we handle contributions

We use git/Github to handle contributions.  If you’re new to git, you may
appreciate this guide [https://openhatch.org/wiki/Git_Basics#Create_pull_request].


As a contributor


Creating a pull request


Get the latest version of master

Before creating a pull request, update the master branch of your local
repository with the latest version of the OpenHatch-owned repository. In
git, you can achieve this by developing on a branch [http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html#_managing_branches] and rebasing your
branch commits on top of master with git rebase master [http://www.kernel.org/pub/software/scm/git/docs/git-rebase.html]. You can also use
git rebase -i master for an interactive rebase, in which you can reorder
and edit commits. We prefer rebasing to merging because rebasing preserves
a linear commit history, which can be easier to keep track of and reason
about.




Test your changes



	Add unit tests with your functionality changes or additions.


	Use docstrings and comments where appropriate. Spell-check your
additions. Try to apply pep8 [http://pypi.python.org/pypi/pep8] standards.


	Test your changes on a local instance of the website. Prove to yourself
that your changes address the issue they are supposed to address.


	Run the test suite, and make sure your unit tests pass and all tests that
passed before your changes still pass.


	Use a tool like PyChecker [http://pypi.python.org/pypi/PyChecker/0.8.12] to check for bugs.










Generate a pull request

Generate a pull request by pushing your changes to your personal remote.
You can then create a pull request to the OpenHatch repository. In the commit
message, include the issue the pull request addresses. For example: “Closes:
http://openhatch.org/bugs/issue398”






Submitting a pull request



	Add a link to the pull request in the issue ticket at https://openhatch.org/bugs.


	Change the issue status to “need-review”.


	Join IRC and say that you have an issue ready for review.







The pull request will be checked for code style errors (such as pep8 [http://pypi.python.org/pypi/pep8] violations) by the lint-review bot. To know more about the bot, see Checking coding style errors in pull requests with lint-review.

If the reviewer says it’s ready to go, your request will get merged in short
order. If the reviewer has feedback he/she wants addressed, make the necessary
revisions and start back at the “Check/test your changes” section.




Permit us to share your work



	Join our Devel email list by entering your email address into the form at
http://lists.openhatch.org/mailman/listinfo/devel


	Send an email to devel@lists.openhatch.org with a message like:


The work I contribute to OpenHatch is work I have permission to share.
I permit anyone to re-use it under the terms of the Affero GPL,
version 3 or later. Additionally, contributions in the docs/ directory
can be shared under the terms of CC Zero 1.0.
















As a reviewer


Apply the pull request to your local repository

Find the URL of the pull request by going to the main pull request page on
Github and clicking on the link named ‘command line’.  Github will give you
instructions, including the URL of the pull request.  Follow all of the
instructions except the last one, which tells you to push back to the origin.




Review the pull request for correctness and cleanliness

Things to think about:



	Does the pull request make sense? Does it look readable?:

git log -p







	If the author hasn’t already done this: tell the author
“Please email devel@lists.openhatch.org saying that you’re okay with
your work being under the Affero GPL, version 3. If you’re willing, it
is preferable that you say ‘the Affero GPL, version 3 or later, at your
option’.”


	If you have revisions you’d like to see made, change the issue status to
“in-progress”, re-assign the issue to the pull request submitter if
it isn’t already, and leave your review feedback on the pull request.


	After leaving the revisions in the comments, you may optionally leave a
note to the author regarding expectations on when or if the pull request
will be worked on further. You may use the below example:

To add an arbitrary (but perhaps useful for planning) time
bounded-ness, is this addressing the above something you'd be
interested in doing over the next 3 days? If not, I can take care of
it after that. If you're interested in being the one to do so, but you
know you need more than 3 days is not long enough, that is fine; just
say so, and we're happy to wait for you to perfect these changes.















Push and deploy

If you want to deploy the changes, and you have push access to the repository, you
can do so by following the steps listed in the section labeled Deployment [http://openhatch.readthedocs.org/en/latest/advanced/deployment.html].

If you don’t have push access, you will need to rope someone else in for this. Anyone
in the Login team [http://openhatch.readthedocs.org/en/latest/community/login_team.html]
can do a push as well as deploy access. Asheesh Laroia (paulproteus) is the traditional
person to do this, but it’s good to ask someone else so they get practice!

Things to know:



	If you push to origin/master, Travis CI will test it.


	Once you’re happy, you can run the deploy script, but note that will push
the current HEAD to origin/master.

cd mysite
./scripts/deploy







	When you deploy, check a page or two to make sure things are okay.







For more details on how we use Continuous Integration and Travis CI, see
Continuous integration.









          

      

      

    

  

    
      
          
            
  
Documentation Style Guide


Note

OpenHatch’s Documentation Style Guide is still a work in
process. We like Kenneth Reitz’s excellent Guide Style Guide [http://docs.python-guide.org/en/latest/notes/styleguide/]
for its concise and consistent style guidelines. We refer you
to this guide until ours is posted.







          

      

      

    

  

    
      
          
            
  
Layout of OpenHatch’s source code

This section should help developers get a better understanding of OpenHatch’s
oh-mainline repository.

This section is a basic overview. Additional details can be found in the
LAYOUT file in the root directory of oh-mainline.


Directory structure


	docs/

	This directory contains documentation files for OpenHatch and is
rendered at RTD ReadtheDocs <http://openhatch.readthedocs.org>.



	downloads/

	This directory may be used by deployment for temporary storage.

[FUTURE: It may be possible to remove this directory in a later
release.]



	htmlcov/

	This directory stores reports created by the coverage testing tool.



	mysite/

	This directory contains the OpenHatch website and all the “Django
apps” that are part of it. Each subdirectory is an app.

Each of the apps has some tests, views, and frequently models and forms.
Their file paths are:


/tests.py

/views.py

/forms.py

/models.py




You can read more about tests, views, forms, and models in the
official Django tutorial:


https://docs.djangoproject.com/en/1.5/intro/tutorial01/





	customs/

	This directory contains “import/export” code like the support for
loading and saving snapshots of the OpenHatch database, downloading
data from bug trackers, and scanning other websites for information
about OpenHatch members.



	profile/

	This app contains code on information about OpenHatch users.



	account/

	This app (mostly) contains code to let a user edit their information.



	missions/

	This is the Django app where the training missions live.



	search/

	This Django app contains the views and models necessary to display
the volunteer opportunity finder, also known as bug search.





The apps also use other Django features, or Django add-ons. Here is a
list by filename and a URL reference to further info:


	/templatetags.py

	https://docs.djangoproject.com/en/1.5/howto/custom-template-tags/



	/migrations/

	http://south.aeracode.org/



	/api.py

	http://django-tastypie.readthedocs.org/



	/fixtures.json

	https://docs.djangoproject.com/en/1.5/howto/initial-data/



	/management/commands

	https://docs.djangoproject.com/en/1.5/howto/custom-management-commands/



	/view_helpers.py

	http://lists.openhatch.org/pipermail/devel/2013-March/003151.html



	/templates/

	https://docs.djangoproject.com/en/1.5/topics/templates/







	tools/

	This directory contains helper tools that make things easier for a
contributor (for example, a script for rendering docs).



	vendor/

	This directory contains code from other projects that we rely on.
(For more information, look at
http://kitsune.readthedocs.org/en/latest/vendor.html .)








Informational Files

These informational files are found in the root directory of oh-mainline.


	README.rst

	Read the README! Read it first.

It points to our main documentation; this LAYOUT file is just a quick
thumbnail view of what different files in here are.

(Aside: The “.rst” extension indicates reStructuredText format is used.)



	LICENSE

	This file explains what permissions you have, if you want to re-use
source code you find in this repository.



	CREDITS

	This file gives credit for files used by OpenHatch.



	LAYOUT

	This file (the one that you are viewing now) gives an overview of the
project high-level directory and file structure.








dotfiles

In general, dotfiles provide configuration details.



	.coveragerc

	coverage testing configuration



	.gitattributes

	git



	.gitignore

	Files ignored by git



	.travis.yml

	Travis continuous integration configuration











Other files and executable files


	manage.py

	This is the well-known and widely-loved Django management script.



	Procfile

	A file used when deploying the site.



	requirements.txt

	This file indicates packages (i.e. ones that are not pure Python code
and contain compiled code) that are installed in a different manner than
packages found in the vendor directory.



	run_importer.sh

	This shell script is used for deployment and running of scraping of
projects for suitable bugs for contributors. [FUTURE: This file may
be relocated to a different place.]



	setup.py

	This file lists the dependencies of the OpenHatch codebase.











          

      

      

    

  

    
      
          
            
  
Advanced installation

This file contains information on things that you don’t have to do! If
you’re a completionist or really just like installing dependencies or
reading the OpenHatch documentation, keep reading.


Overriding local settings

If you wish to override the default settings, you may create a
separate file with individual settings you wish to change.
There is a hook at the end of the in mysite/settings.py that allows
contributors to override individual settings. To override settings,
create a new file in the mysite directory and name it local_settings.py .
You can place any settings you wish to override in this file.




Automated testing

The OpenHatch code comes with automated tests that you can run to make
sure that it is set up To execute all tests, run this command:

python manage.py test





For more about tests visit: http://openhatch.org/wiki/Automated_testing


Postfix, postmap and testing

The code for site creates a configuration file for an email service,
Craigslist-style, that lets all users have an anonymous inbound email
address that goes to them. In particular, the code configures a
Postfix-based alias map for this. When that alias map changes, we notify
Postfix by calling postmap.

If the postmap binary (/usr/sbin/postmap) is not available on the system,
it is better not to try running that binary during testing. So before
tests we check for presence of the postmap binary and log a warning if
it is not present on the system.






Optional dependencies

You will probably see some warnings when you run the site, providing
you information about extra dependencies.

These extra dependencies require compiled code, AKA Python C
extensions. Depending on your operating system, you might install
these using a GUI installer, the program “pip”, or a package manager
like apt-get.

For each dependency, we specify how to get it with pip or
apt-get. If you have a Debian or Ubuntu system, use the apt-get
instructions. Otherwise, try pip. (And if it doesn’t work, ask for
help quickly.)


Re-scaling images

When you add a profile photo, and at other times, the site attempts to
rescale the image to fit into the visual constraints of the
page. Django and the OpenHatch code work together with PIL (the Python
Imaging Library) to transform images.

PIL requires some C dependencies, so the site can function without
it. If you want image rescaling to work, you must install PIL.

To do that, run one of these commands:

$ sudo apt-get install python-imaging
$ pip install PIL








Bug import dependencies

If you want to modify the code that downloads bugs (AKA “volunteer
opportunities”) from other projects, you need these dependencies:

lxml: An XML and HTML parsing library

$ sudo apt-get install python-lxml
$ pip install lxml








Bug Importers

If you want to use the customs bug importers, they will need to be installed.
You can do this in one of the following ways:


	pip install https://github.com/openhatch/oh-bugimporters.git  # (readonly)


	Clone the repo into a folder at the same level as oh-mainline.







Training missions: System tools

Most of the training missions work fine without installing any extra
dependencies. There are two exceptions.

The Subversion training mission requires that you have the ‘svnadmin’
tool installed. To get it on Debian or Ubuntu, do:

$ sudo apt-get install subversion





Subversion repositories for the svn training missions are stored in
mysite/missions-userdata/svn. This directory must be available via
svnserve for users to be able to do the svn missions.  See
mysite/missions-userdata/svn/README to read how to set up svnserve.

On Windows and Mac, the code currently can’t find svnadmin.

The git training mission expects to find “git” on your system path. On
Debian/Ubuntu systems, do:

$ sudo apt-get install git-core










Maintenance

You may want to read about how to maintain an OpenHatch site. maintenance.rst tells
you about that.







          

      

      

    

  

    
      
          
            
  
Working with git


OpenHatch has a long history of helping contributors build existing and
learn new skills. This document section has information that OpenHatch
contributors have found useful when working with git. We encourage you to
share helpful git resources by adding your favorites to this file and
creating a pull request.









	Git Commands

	What it does





	git  clone <repo>

	Used to clone the repo git clone <repo> | <name>



	git commit

	Commit an applied change on the given branch



	git remote

	Track [https://help.github.com/articles/configuring-a-remote-for-a-fork/] a
remote branch



	git revert <commit-SHA-1>

	Revert [http://git-scm.com/docs/git-revert] changes in a commit



	git fetch <remote> <branch>

	The git fetch [https://www.atlassian.com/git/tutorials/syncing/git-fetch/] command
imports commits or tags [http://git-scm.com/book/en/v2/Git-Basics-Tagging]
from a remote repository into your local repo.



	git pull

	
Updates your repo. Shorthand for git fetch followed by git merge FETCH_HEAD

Recommended to use it with –rebase [http://gitolite.com/git-pull--rebase].






	git log

	
Lists commits made in the current branch of the repo.
Check this [https://coderwall.com/p/euwpig/a-better-git-log].

Hacks: git log --pretty=format:"<%h> [%an] %d%Creset %s"






	
	git rebase :

	
	git rebase <base>


	git rebase -i <base>


	git rebase -i HEAD~NUM


	git rebase -i bbc643cd^


	git rebase --abort


	git reflog









	
	Rebasing is the process of moving a branch
to a new base commit


	Interactive rebase [https://help.github.com/articles/using-git-rebase/]


	Modifying to a head [https://help.github.com/articles/about-git-rebase/]


	Modify to specified commit bbc643cd


	Abort a rebase


	Tracks the changesets to the tip of branch











Issues with Pull Requests


Helpful tips for new contributors


	Get into OpenHatch workflow [https://openhatch.org/wiki/OpenHatch_git_workflow] .


	
Understand your problem [https://sethrobertson.github.io/GitFixUm/fixup.html]
first.





	Learn to go to a certain commit.


	
Tip: Each commit has a hash value(SHA-1) which is fixed.
Switch [http://stackoverflow.com/questions/4940054/how-can-i-switch-my-git-repository-to-a-particular-commit]
to a commit.









	
If you need to modify a single commit as requested by the
maintainer in the pull request
revert the old commit with a new commit and push it
mentioning the changes you have made:




	
Tip: Please understand reset and revert [http://stackoverflow.com/questions/2530060/can-you-explain-what-git-reset-does-in-plain-english] .
The ideal solution is to revert previous commit [http://stackoverflow.com/questions/4114095/revert-to-a-previous-git-commit] ,
edit it and push it for changes that are not published or
force push it for changes that are published.
You can also undo [http://stackoverflow.com/questions/927358/undo-the-last-git-commit]
a commit and force push the changes made.





	
Note: Commits do not technically change when we force push
the commit, reset or modify them. But the hash gets updated, and the
new hashed commit gets tagged to that branch. You can easily find you
previous commit(s) on github too just by adding /commit/<branch>
to the repo address. It will show you the remote git log. See the
hash get changed after rewriting the commit.









	
Sometimes you have two or more commits on your pull request, which is
usually not desired by maintainers. The solution is to do an
interactive rebase and squash the previous N commits:




	
Tip: Please understand interactive rebase [https://help.github.com/articles/about-git-rebase/].
Checkout the branch the pull request represents, count the number[N]
of commits you need to squash [http://stackoverflow.com/questions/2563632/how-can-i-merge-two-commits-into-one]
from the pull requests or git log on that branch, then
git rebase -i HEAD~N. N (number of commits before) is usually 2
if you want to squash 2 commits. Change pick to squash for all
but one line. Save the configuration. Then force push the new commit
git push -f origin <branch>.









	
If you have unwanted commits attached to the pull request or
history is broken then you need to do an interactive rebase :




	
Tip: It is better to tell others that you are having such problem
as it needs rewriting history [http://git-scm.com/book/en/v2/Git-Tools-Rewriting-History].
Please understand rebasing [https://github.com/edx/edx-platform/wiki/How-to-Rebase-a-Pull-Request]
and please see your logs [http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History].
The solution is an interactive rebase [https://help.github.com/articles/about-git-rebase/]
Command: git rebase -i HEAD~N (N gives the number of the
revisions up in that branch). Try to pick N carefully count the commits
as maintainers will ask you to give the finalized result in a single
commit.





	
The interactive rebase on that branch will show the commands that
runs on that branch and finally shows on the pull request. Delete the
commits you don’t need and keep the ones you need. Squash the needed
commits to a single commit.





	
Note: Branches are technically a tagging system to commits that
have a hash value, they are relative, even the master branch.
It can operate with commands like squash, pick and many others. The
commands are played from top to bottom on each commit and finally
shown in the pull request. See the options [https://help.github.com/articles/about-git-rebase/].














Resolving Merge Conflicts


Conflicts are essentially two or more commits from different branches which
overlap because they have different content on the same revision.
Understanding Merge conflict [https://www.youtube.com/watch?v=zz7NuSCH6II],
you can manually resolve it with git.




Tools like kdiff3 [https://www.kde.org/applications/development/kdiff3/]
helps you pick that content of the commit which you want to get merged in
the final commit. A tutorial [https://www.youtube.com/watch?v=-CkqiIPAzgQ]
on using kdiff3. Kdiff3 can be configured for all types of version
control ranging from git, svn or mercurial.



Note: The merge conflicts can also be resolved with an interactive rebase.


Tips on Installing kdiff3

Ubuntu:


$ sudo apt-get install kdiff3




Mac:


$ brew install kdiff3




Configure kdiff3:

Recent Git versions have built-in support for kdiff3.


$ git config --global merge.tool kdiff3




This makes git mergetool launch kdiff3.


Note: We recommend that you refer to the kdiff3 documentation for
the latest installation instructions.










Become a git Expert


If you like git a lot and use it often, use tools like git-extras and
aliases to increase your productivity.




Alias


Saves you Keystrokes. These scripts are added to your .bashrc,
.zshrc or any file you want to source. Open .bashrc on your
favorite text editor. Follow the instructions.



Examples

alias gc="git commit -m "$1""

alias shortform="the longer version of the command"








git-extras [https://github.com/tj/git-extras]


Get 40 extra commands that you may find helpful but are missing in
git, i.e git-undo, git-summary, git-changelog, git-effort.




Installation [https://github.com/tj/git-extras/wiki/Installation]

Ubuntu:


$ sudo apt-get install git-extras




Mac:


$ brew install git-extras







Usage [http://vimeo.com/45506445]


	
git-summary # gives the status of the
hours and duration you are actually working on a git project.





	git-effort # shows your file stats on the project.


	git-undo # undo a git commit.


	git-extras # shows the list of commands.














          

      

      

    

  

    
      
          
            
  
Advanced testing


Note

Twill is going away in the OpenHatch code base and is being
replaced by WebTest (yay!).



The purpose of this page is to show you how to write automated tests
within the OpenHatch codebase.

If you already know how software testing works, skip to the section
Details specific to OpenHatch.


Tests: An overview

You can run the many tests that are part of the OpenHatch code:

$ python manage.py test





During the test run, you’ll see a bunch of dots. Dots mean success.


	Tip You really should write a test if you add new functionality.

	This page explains how and when to write new tests and how to
run the tests we have.






What a basic test looks like

Imagine this is in mysite/base/views.py:

def multiply(x, y):
    return x * y





Then this would be in mysite/base/tests.py:

import mysite.base.views

class TestMultiplication(django.test.TestCase):
    def test_return_one(self):
        self.assertEqual(35, mysite.base.views.multiply(7, 5))








When a test fails

When a test fails you will see:



	FAILED followed by the test_name


	the Traceback


	the failure summary (e.g. FAILED (failures=2, errors=1, skipped=9))







To force a failure, maybe you are just curious to see what it will
look like, you can add to the test code:

self.assertTrue(False)





This assertion will fail and so will the test containing this code.






General testing tips


Read the official Django testing guide

The official guide on Django testing [http://docs.djangoproject.com/en/dev/topics/testing/] is quite good. It says:


The best part [about writing tests for Django code] is, it’s really
easy.




OpenHatch contributors use the Django “unit test” style of writing tests.




How to write code that is easy to test

If you are writing a function, have it “accept arguments” for its data,
rather than having it calculate the input itself. For example:

Good:

def multiply(x, y):
    return x * y





Less good:

def multiply(x):
   y = settings.MULTIPLICATION_FACTOR
   return x * y





It’s okay to rely on things like system settings and database content, but
in general if your functions are simpler, they are easier to test.






Details specific to OpenHatch


We regularly run Automated Testing

OpenHatch’s Automated Testing is run by Jenkins, with the interface on the
virtual machine donated by GPLHost @ http://vm3.openhatch.org:8080/




Where to write your tests

In general, add tests to the same Django app as you are editing. For
example, if you made changes to base/views.py, then add a test in
base/tests.py.

The test files are kind of ‘sprawling’. It doesn’t really matter where
within the tests.py file you add your test. I would suggest adding it to
the end of the file.




The OpenHatch test case helper class


Note

Twill is going away in the OpenHatch code base and is being
replaced by WebTest (yay!).



In mysite/base/tests.py there is a TwillTests class. It offers the
following convenience methods:



	login_with_client


	login_with_twill










The subversion missions test cases

When running or testing the subversion mission locally, subversion (svn
and svnadmin) must be installed on the local system. If subversion is
not installed, the tests will not be run.

Settings information related to subversion, such as path locations, can
be found in the settings.py.






About fixtures


Note

Twill is going away in the OpenHatch code base and is being
replaced by WebTest (yay!).




To run your tests

What Django app did you write your test in? Let’s pretend it was in the
base module. To run all the tests in base:

$ python manage.py test base








To run just a few specific tests

You can run just one test. For example, a test named base.Feed:

$ python manage.py test base.Feed





Or you can run two (or more) tests:

$ python manage.py test base.Feed base.Unsubscribe.test_unsubscribe_view





The structure here is app.class.method. If you want to just run your own
new test, you can do so.






Mocking and patching


Note

This section is important, but we haven’t written it yet. Please
consider helping us write this section.
See Documentation






Testing with Twill, versus the Django test client


Note

Twill is going away in the OpenHatch code base and is being
replaced by WebTest (yay!).



To make a long story short:



	The Django test client is good at introspecting how the function worked
internally.


	Twill tests are good because they let you say “Click on the link
called ‘log in’”.













          

      

      

    

  

    
      
          
            
  
Deployment

This is a quick-and-dirty page explaining how to deploy new versions of the
OpenHatch code.


Prerequisites


	You must be part of the Login Team (so your SSH key is available in Github
and you’re in the openhatch-committers group, and also that your SSH key is in
the deploy@linode.openhatch.org account’s .ssh/authorized_keys)


	You must be at a computer with that SSH key


	Deploying takes about 3 minutes, maybe less if things go well. (If there are
database migrations to run, it can take dramatically longer.)







How the deploy script works

You need to have these programs installed: ssh, git.

The script does two things:


	Pushes the current local master branch to Heroku.


	SSHes to the two linodes, where it runs mysite/scripts/deploy_myself.sh
which updates the site.







Recommended way to use the deploy script

# Make sure .git/config has these 5 lines
[remote "origin"]
    url = git@github.com:openhatch/oh-mainline.git
[remote "heroku"]
    url = https://git.heroku.com/openhatch-production.git
    fetch = +refs/heads/*:refs/remotes/heroku/*

git fetch  # get the latest

git checkout origin/master -b deploy_me  # create a deploy_me branch

# Then get the patch file with e.g. wget, and do:
# Import the patch into current branch, probably called deploy_me
git am /path/to/the/patch.file

git log  # and sanity-check it

# If you like it, do:
cd mysite
./scripts/deploy





It’s really important to make the separate branch so that you don’t accidentally
push random local work into the live site.




Notes about the deployment

Here are some relevant details of how web requests get routed to the
OpenHatch code.


	Web requests hit CloudFlare, which proxies them to Heroku (for
openhatch.org and www.openhatch.org) or linode.openhatch.org (for
other OpenHatch sites, like wiki.openhatch.org).


	linode.openhatch.org has an nginx that handles some requests itself,
and dispatches others to Apache.


	In production, we use a mysite/local_settings.py file that imports
mysite/deployment_settings.py and overrides the Django SECRET_KEY,
DATABASE_URL, and a few other settings.







Other sites we host

The OpenHatch organization hosts some other websites, including
bostonpythonworkshop.com and corp.openhatch.org. For information about
that, read the documentation on the wiki about static site hosting [https://openhatch.org/wiki/Static_site_hosting].







          

      

      

    

  

    
      
          
            
  
Deploying to Heroku


Overview

Heroku is a service that provides web application hosting. They have a
free-of-cost tier. If you want to create a web URL for the changes you’ve
made to your version of the OpenHatch site, deploying that code to Heroku
is an easy, no-cost way to do that.

The steps are all listed below. Keep reading to start following
them. Note that many of the instructions require typing commands into
a command prompt.




Install the Heroku toolbelt and log in

To use the Heroku service, you’ll need to create an account on their
website and install software that makes it easy to interact with their
service.

Read their instructions [https://devcenter.heroku.com/articles/quickstart] to do that. Be sure to configure your SSH
key with the service. (If you need help with that, read their docs or
find OpenHatch people on IRC.) Finally, make sure you have run the
“heroku login” command.

If you don’t see instructions for your operating system, look in this page’s
Troubleshooting section.




Create a Heroku app

On the Heroku service, individual sites are called “apps”. You’ll need
to create an app corresponding to the code you want to deploy
there. At the time of writing, you are permitted to create an unlimited
number of apps for free. Therefore, I personally recommend creating an
app whose name is similar to the branch name on your computer.

This app name appears in public as part of the domain name, so choose
something you don’t mind other people reading! (If you leave out the app
name, Heroku will pick a random cute name for your app.)

On your computer, within a terminal, change directory into your clone
of oh-mainline. You’ll use the “heroku” command to create your
app. (In the example here, I’ve named my app “openhatch”.
Substitute your own app name!) So, type something like this:

$ heroku create openhatch





You should see this output:

Creating openhatch... done, stack is cedar
http://openhatch.herokuapp.com/ | git@heroku.com:openhatch.git
Git remote heroku added





Now push your local git repo to Heroku with this command:

$ git push heroku master





You should see this output:

Initializing repository, done.
Counting objects: 70870, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (23526/23526), done.
Writing objects: 100% (70870/70870), 78.90 MiB | 103 KiB/s, done.
Total 70870 (delta 43536), reused 70870 (delta 43536)

-----> Removing .DS_Store files
-----> Python app detected
-----> No runtime.txt provided; assuming python-2.7.4.
-----> Preparing Python runtime (python-2.7.4)
-----> Installing Distribute (0.6.36)
-----> Installing Pip (1.3.1)
-----> Installing dependencies using Pip (1.3.1)
       Downloading/unpacking psycopg2 (from -r requirements.txt (line 2))

...

       Successfully installed psycopg2 PIL
       Cleaning up...

-----> Discovering process types
       Procfile declares types -> web

-----> Compressing... done, 70.5MB
-----> Launching... done, v5
       http://openhatch.herokuapp.com deployed to Heroku

To git@heroku.com:openhatch.git
 * [new branch]      master -> master





Because of the large size of the OpenHatch git repository, the first
git push may take a few minutes.

As you make local changes, you can just use the same “git push”
command to update the code on Heroku. Note that if you end up
rewriting history, you may need to add a plus sign to the above
command, e.g.:

$ git push heroku +HEAD:master








Set up the database

Now that your version of the OpenHatch code is on Heroku, you’ll have to
initialize the database that Heroku automatically created for you.

Now, initialize the database with:

$ heroku run python manage.py syncdb --noinput





More information from Heroku will scroll by. You may notice

( INFO     Some parts of the OpenHatch site may fail because the lxml
  library is not installed. Look in ADVANCED_INSTALLATION.mkd for
  information about lxml )





At this point, this is not an issue.

You’ll also need to run the migrate command:

$ heroku run python manage.py migrate








Visit your app on the web

Now you can go to the Heroku URL for your app. If you’re not sure what
that URL is, you can type:

$ heroku apps:info





Look for the “Web URL” at the bottom of the output, and visit that in
your web browser.

Now, celebrate! Your OpenHatch instance is on the web. Go get yourself
a strawberry smoothie (making substitutions as necessary for your
dietary restrictions).




Troubleshooting


	If Heroku doesn’t have instructions for your operating system, and you
have a package manager, try installing git and rubygems from your
package manager. For example, on Fedora and other systems that use yum,
you could type:

$ sudo yum install git rubygems





Then run:

$ sudo gem install heroku







	You can verify the status of your application with:

$ heroku ps
=== web (1X): `./mysite/manage.py runserver 0.0.0.0:$PORT`
web.1: up 2014/01/04 13:48:55 (~ 17m ago)







	From time to time things might not work as expected. In those times, Heroku
provides with a nice log facility:

$ heroku logs





More documentation on how to use Heroku’s log facility [https://devcenter.heroku.com/articles/logging] and processes [https://devcenter.heroku.com/articles/procfile] is
available to you.











          

      

      

    

  

    
      
          
            
  
Maintenance tasks

The OpenHatch web app has some built-in features to help you maintain
an instance. This file lists those features and how to use them.


Importing data snapshots

If you want your site to have a database filled with data like what is
on the main OpenHatch.org site, you can import a data snapshot.

See https://openhatch.org/wiki/Importing_a_data_snapshot for more
information about that. You can read our privacy policy at
https://openhatch.org/policies-etc/.




How to run the bug importer

This can be done via cron job.




Run the hourly tasks related to profiles

There’s a management command that runs necessary maintenance tasks. At
time of writing, it tries to keep our cache of recommended bugs more
or less up to date with the state of the bug table in our database.

To run this maintenance task hourly, run these commands:

# The following use of GNU screen is helpful for running maintenance tasks,
# but is not necessary.
screen -RD   # Create an instance of screen, or attach to an existing one.

# Type Ctrl-a, c to open a new screen
while (true); do ./manage.py profile_hourly_tasks; sleep 1h; done

# Type Ctrl-a, d to hide ("detach from") the screen








Adding jQuery UI components

When you want to add a jQuery UI component, go to http://jqueryui.com/download

Select the following options, plus yours:


	Sortable


	Accordion


	Tabs


	Progressbar




Note that the site will automatically select any dependencies (like jQuery UI’s
“Core”).

First, under “Theme”, select “No Theme”. Under “Version”, select “1.7.2
(stable release, for jQuery 1.3.2). Then click your little cartoon hand on the
Download button.

Unzip the file in /tmp/, and just extract the file
js/jquery-ui-1.7.2.custom.min.js, and cp it to mysite/static/js/. That will
overwrite the existing jQuery UI bundle.

Be sure to check using git diff that the change you’ve introduced in git’s view
of that file is exactly what you expect.

Finally, don’t forget to add your component to the list above, so the next
person does the right thing.




Editing the website’s CSS

The CSS files for OpenHatch repository can be found in the static folder of the oh-mainline repository:
https://github.com/openhatch/oh-mainline/tree/master/mysite/static

These CSS files has been written in Less format. Not sure what Less is? Read the official documentation [http://lesscss.org/].







          

      

      

    

  

    
      
          
            
  
Adding a new bug tracker via git

(You can also add a bug tracker via the website [http://openhatch.readthedocs.org/en/latest/tutorials/adding_new_bug_tracker_web.html].)


Clone the repository

You will need to have a local copy of our git repository. You can read about
that in the Getting Started.

You will also need a local copy of a sister project,
“oh-bugimporters”. You can get that from https://github.com/openhatch/oh-bugimporters .




Overview of steps

You will need to achieve all the following things:


	Adjust oh-bugimporters so that it generates output with data from your
bug tracker of choice.


	Ensure the data imports properly, by running:

python manage.py import_bugimporter_data < output_from_bugimporters.jsonlines



	Ensure the web UI shows an option for the new kind of bug tracker. To do
that, take a look at mysite/customs/models.py.







In a little more detail


	Clone oh-bugimporters to your local machine, and oh-mainline in parallel,
such that both folders are on the same level in the directory hierarchy.


	Initialize oh-bugimporters with:

virtualenv env





and:

env/bin/python setup.py develop





See also oh-bugimporters/docs/intro.rst for more infos about how to
setup the subproject of oh-bugimporters for development and testing.



	Now add your new tracker to the bugimporter folder, by using one of
the existing variants as template. If possible, add proper tests too.


	Create a testfile with basic queries and then run a command like:

env/bin/scrapy runspider bugimporters/main.py -a input_filename=/tmp/input-configuration.yaml -s FEED_FORMAT=json -s FEED_URI=/tmp/results.json -s LOG_FILE=/tmp/scrapy-log -s CONCURRENT_REQUESTS_PER_DOMAIN=1 -s CONCURRENT_REQUESTS=200





in the oh-bugimporters folder. Here /tmp/input-configuration.yaml is
the prepared input file with the following basic content (may vary,
depending on the bugtracker’s implementation):

meta: {limit: 500, next: null, offset: 0, previous: null, total_count: 1}
objects:
- base_url: !!python/unicode 'http://scons.tigris.org/issues'
  bitesized_text: !!python/unicode 'Easy'
  bitesized_type: !!python/unicode 'key'
  bugimporter: !!python/unicode 'tigris'
  custom_parser: !!python/unicode ''
  documentation_text: !!python/unicode 'documentation'
  documentation_type: !!python/unicode 'subcomp'
  existing_bug_urls: []
  get_older_bug_data: null
  queries: [!!python/unicode 'http://scons.tigris.org/issues/xml.cgi']
  tracker_name: !!python/unicode 'SCons'





After the run, check the log files /tmp/scrapy-log and /tmp/results.json
for correct results.



	For the website part (note how we’re switching to the oh-mainline folder
now) you have to initialize your local installation of OpenHatch with the
command:

python manage.py syncdb --migrate --noinput







	Once you have changed the files mysite/customs/forms.py and models.py to
add your new tracker type, you have to recreate the migration scripts for
the customs folder. So call:

python manage.py schemamigration customs --auto





See also the page https://openhatch.org/wiki/Making_schema_changes for more
infos on managing and updating schema changes.



	Now you can start the local OpenHatch site with:

python manage.py runserver





and direct your browser to it at http://localhost:8000 .



	Add a user and your project, and setup the new bug tracker for it, as you
would do normally.


	Ensure that the base folder for temporary import files is writable for your
current user. The default folder as used in ./run_importer.sh is:

/var/web/inside.openhatch.org/crawl-logs







	Patch the import script ./run_importer.sh and change the URL for the
OpenHatch site from “https://openhatch.org/…” to “http://localhost:8000”.
Otherwise, the run_importer script tries to download and update all bugs
that are currently tracked at the real website…which might take a little
while.


	Run the import script:

./run_importer.sh





and wait for it to finish. Then reload the browser page and check that the
bugs have indeed been imported properly.



	If you mixed things up, you can reset the database completely at any time
with:

python ./manage.py reset_db --router=default





This will leave you with a blank OpenHatch instance, without any users,
projects or bugs. Then rinse and repeat the steps above…





If you get stuck, please email the list or ping paulproteus or others in IRC!




Submit a patch

This is the easiest part. See How we handle contributions!







          

      

      

    

  

    
      
          
            
  
Developer Notes

This section of the documentation is intended to provide developers
with technical information that is helpful to know. This information
will typically only be necessary for the short term (less than 6
months) as developers collaborate on larger issues that require
a longer development timeframe.

We make this information available since it will likely be useful
beyond the scope of one individual issue in our GitHub issue tracker.


January 2015 Notes


DataImportAttempts (DIAs)

DataImportAttempt is a model that contains metadata about when the
profile importer (the thing that attempts to automatically fill in
your list of projects you’ve contributed to, by letting you type in
a query like ‘asheesh@ahseesh.org’, and then the code will trigger
some background HTTP GETs to other services (see – an attempt to
import data!) and log a note about this attempt in a model called
DataImportAttempt. We no longer do automatic profile importing, so
we don’t need DIAs.




Twill

Twill being phased out of our tests and is being replaed with the use of webtest.




Ohloh

For project icons, we will be moving away from the use of Ohloh (now
know as OpenHub). Ohloh is not used for any other purpose in the
OpenHatch codebase. We will refactor the way project icons are fetched so we get them a different way than through Ohloh.









          

      

      

    

  

    
      
          
            
  
Monitoring


The basics


	linode.openhatch.org is the main OpenHatch box, which runs the website.


	linode2.openhatch.org is the secondary server for OpenHatch.
It hosts Nagios!


	vm3.openhatch.org is a third server, hosted at GPLHost, that runs the
Jenkins continuous integration server.


	The Nagios configuration is owned by a user called nagios on
linode2.openhatch.org.







Access


	We use ssh keys for login.


	If you want SSH access to that account, file a bug requesting it, and attach
an SSH key. You should hear back within 2 days; if you don’t hear back by
then, try to find paulproteus or jesstess on IRC.


	Then you can do:

ssh nagios@linode2.openhatch.org







	You’ll know it’s working if you are logged in. If you see a “Password:”
prompt, then it is not working.







Notifications


	Nagios notifications go to
monitoring@lists.openhatch.org [http://lists.openhatch.org/mailman/listinfo/monitoring]. Anyone can
subscribe to this list or read its archives.







Making changes

In brief, here’s what you need to know:


	Edit files in ~nagios/


	Once you know what changes you want to make, create a local branch with those
changes:

git checkout -b my_changes







	As you make changes, make meaningful commits. Also, tell “git commit” to use
your identity:

git commit --author="Some Body <some.body@example.com>"







	After you have made the changes, ask someone to review them and merge the
changes to master.


	Rationale: If you stick to the above process, it is fairly easy to roll
back to the “master” branch of the Nagios configuration.


	History: We came up with this process during issue332 [https://openhatch.org/bugs/issue332].







Viewing the web interface, and handling the daemon


	On linode2, ~nagios/secrets/ contains the mailman and Nagios web
interface passwords.


	View the Nagios web interface at http://linode2.openhatch.org/nagios3/


	To restart the Nagios daemon, run

sudo /etc/init.d/nagios3 restart












In case of emergency


	See Emergency operations for the OpenHatch server. People with ssh keys set up for
the Linode Shell (Lish) can reboot the box and have other limited emergency
capabilities.







TODOs


	Send Nagios notifications to IRC (#openhatch-auto?)?


	Make the Nagios web interface world-viewable.


	Version the monitoring configurations.


	Send SMS alerts to people who want them.


	Add historical trending (Munin)?







Related


	See also Emergency operations for the OpenHatch server


	See also the page about the Login Team










          

      

      

    

  

    
      
          
            
  
Continuous Integration


Overview

The OpenHatch code has a suite of tests. It’s important that when we deploy
the code changes to the website that all tests are passing.

Continuous integration [http://www.aosabook.org/en/integration.html] helps our developers see if their code changes are
passing all tests or are failing a test and additional code changes are
needed.




Travis CI

Travis CI [https://travis-ci.org] is a hosted, distributed “continuous integration” system (read
more on Wikipedia about Travis CI [https://en.wikipedia.org/wiki/Travis_CI]). The GitHub page for the oh-mainline
indicates whether our tests currently are passing.


Using Travis CI

There are multiple ways that Travis CI communicates the source code’s current
build status and whether tests are passing:


	The first is the “build” badge on the oh-mainline GitHub page displayed
at the top of the README. Clicking on the “build” badge will display
Travis CI’s status page for OpenHatch.


	OpenHatch’s Travis CI status page can be directly found at
https://travis-ci.org/openhatch/oh-mainline.


	GitHub also provides information on every pull request about Travis CI’s
testing and status related to the individual pull request. This is very
helpful for developers and reviewers.


Note

Currently, Travis CI is showing that our tests are not passing
when tested with a MySQL database. Details can be found in the
OpenHatch issue tracker. We hope to have this issue resolved soon.










Configuration for Travis CI

The .travis.yml file in the oh-mainline directory contains configuration
information used by Travis CI.






Jenkins

Jenkins is a “continuous integration” tool (read more on Wikipedia [https://en.wikipedia.org/wiki/Continuous_integration]). It
wakes up once an hour, checks the git repository for new commits, and runs the
test suite. For additional information about Jenkins, read more on Jenkins [https://jenkins-ci.org].

Status information about continuous integration projects can be found on
OpenHatch’s Jenkins dashboard : http://vm3.openhatch.org


Jenkins configuration

There are a number of “projects” in Jenkins. Different ones run different
suites of tests in the OpenHatch codebase. They include or exclude different
Django apps from the OpenHatch codebase.

For example,


	Test the “installation” instructions


	This tests the OpenHatch developer instructions for building OpenHatch.






	Test the “customs” app


	The tests for the customs app often go out to the network and can
break if the remote servers change their APIs.






	Test the “search” app


	The volunteer opportunity finder (“search”) tests can take a while to
run, so we separate them out.






	Test all apps except customs and search


	This is the catchall that tests the rest of the code.








Status information about continuous integration projects can be found on
OpenHatch’s Jenkins dashboard.




Jenkins administration

Right now, only Raffi and Asheesh can modify the configuration of Jenkins.

Anyone can enqueue a run of the test suite by clicking a “Build” link within
a Jenkins project. That’s a good thing.






Future work

It would be super nice if, whenever there was a commit to GitHub master that
passed all the tests, it would be automatically deployed.







          

      

      

    

  

    
      
          
            
  
Backups of the live site


Overview

We have a free, donated account from rsync.net that lets us store 50GB of data
there.

We use duplicity (as per the rsync.net official document [http://www.rsync.net/resources/howto/duplicity.html]). We do full backups
weekly and incrementals daily. We encrypt these backups.

The only server essential to continued operation of the site is
linode.openhatch.org. The other servers do unimportant things that do not keep
state. It would be convenient to have backups for them, but it is not
essential, so for now I suggest we simply skip it.




Details

We use this script to run backups. It runs via root’s crontab, and emails the
results to Asheesh daily.


	do_backup.sh: in git [https://github.com/openhatch/oh-restore/blob/master/do_backup.sh]







Restoring

duplicity has a built-in “verify” feature, which checksums the data, but that
doesn’t help us ensure that our backup was complete.

Therefore, weekly, we automatically restore and test the virtual machine, via a
Jenkins job. http://openhatch.org/bugs/issue530 describes that.




More info about encryption

This backup is encrypted with a GPG key that has been emailed to hello
@openhatch.org on Thu, Jan 26.







          

      

      

    

  

    
      
          
            
  
Emergency operations for the OpenHatch server

The main OpenHatch server is a virtual machine hosted by linode.com.


What to do when the site isn’t working


	Check if SSH is alive

telnet linode.openhatch.org 22





You should get a banner message. If so, things are not so bad. Someone with
root (like Asheesh/paulproteus) can probably SSH in and figure out what’s
going on.



	If SSH is not alive, and the website is down…
Find Asheesh, if possible. Otherwise, well, you might want to know about
Lish.







Lish: Emergency reboots, and more

If you can’t load the website, and if the Linode doesn’t even respond to SSH,
then people with access can connect over the Linode Shell and read console
messages or reboot the virtual machine.

If you want to help us by being part of an emergency crew who can reboot it,
see the next section.

PLEASE do not reboot the machine without getting in touch with paulproteus
(Asheesh), unless it’s clearly a good idea to reboot it!


	http://library.linode.com/troubleshooting/using-lish-the-linode-shell


	Lish via SSH


	ssh linode22043@atlanta76.linode.com


	Lish listens on ports 22, 443, and 2200











To get your key in the list


	File a bug, and assign it to paulproteus.


	The subject should be, “Add my SSH key to lish for linode.openhatch.org”


	Explain who you are and why it is a good thing for you to be able to see
the “physical console” of the virtual machine.






	You should hear an answer back within 2 days.










          

      

      

    

  

    
      
          
            
  
WordPress theming


Overview

The OpenHatch blog is powered by WordPress. This Django-based codebase
has some minimal hooks that enable us to style the WordPress blog by
making changes to this Django codebase.




Details

On a local instance, if you visit
http://localhost:8000/+theme-stubs/wordpress/index , you will see an amusing
absurdity: a Django template has been rendered, but the template
blocks have been filled with placeholder strings.

The purpose of this page is to provide a machine-readable version of
our theme which can, in turn, be processed by a separate engine to be
turned into a WordPress theme.

(In the future, we may use this to generate a MediaWiki theme… and
maybe a Roundup theme? Who knows.)

It is controlled by the template in mysite/base/templates/base/wordpress_index.html.

One thing to note: When exporting the page for use with WordPress,
make sure your settings are configured to set DEBUG to False, or else
every WordPress user will get a copy of the Django Debug Toolbar. This
is not actually a problem, just an amusing fact. (TODO: When
django-debug-toolbar gets this pull request landed
<https://github.com/django-debug-toolbar/django-debug-toolbar/pull/303>,
we can use that in the instructions.)




Editing the Wordpress CSS

If you wish to change the blog’s appearance, you may need to edit the CSS file here:
https://github.com/openhatch/oh-mainline/blob/master/mysite/static/css/blog-style.css




Related


	See also https://github.com/paulproteus/oh-wordpress-theme , the project with code and documentation on generating a fully-functional WordPress theme from this page.










          

      

      

    

  

    
      
          
            
  
Front-end style guide

This style guide covers the interaction of HTML, CSS, and JavaScript on
OpenHatch’s main website.

The “front end” refers to what people see in their web browsers. We create
that experience using HTML, CSS, and JavaScript. We tend to use the jQuery
library so we write less JavaScript, and we try to follow good conventions.

This document contains links to high-quality style suggestions from others,
and also names some common problems that have occurred in the OpenHatch
code in the past.

NOTE: Most of the HTML/CSS advice applies to the upcoming site redesign,
so it may not cross-apply well to the live site for the moment.


HTML/CSS


Colors

Main background: lightest grey, #f8f8f8, with light-hatch.png background image.
Header and footer: dark grey, #333, with dark-hatch.png background image.

Default text color: darkest grey, #222; black is used sometimes for emphasis.

Links: orange, #FF6D3D; white; darkest grey, #222;

Links don’t ever change color; on mouseover, they get underlined.

Borders: translucent light blue, rgba(100, 200, 255, .3); dashed light
grey, #e4e4e4;

Module interiors are slightly translucent white: rgba(255,255,255,.6);
Occasionally (e.g. the front page) a module can have a full-white
interior for emphasis.

Try to avoid font-weight: bold; if possible; differentiate headers
and so forth by size, or maybe color, instead.

Try to store styles in our CSS files or LESS files, rather than inline
in the element.




Cartoons

Cartoons are always 141px high. They should always be flush with the module
beneath them. They are only used on one-column pages (even if there are
multiple-column areas farther down the page, the first module should be
a full-width module).




Layout

There are two base template layouts for pages: one-column and two-columns.
Two-columns has a left 1/3 column and a main 2/3 column, cut on the same
lines as a three-columns outline.

The template that a page uses should be based on what the first module set
on the page looks like. If you want to add more columns on a one-column page,
just create the appropriate divs. If you want one or three columns on a
two-column page, put them inside the {% more_content %} block.

Two column CSS layout:

<column column-left> <column column-right>





Three column CSS layout:

<column three-column> <column three-column> <column three-column three-column-last>








Modules and submodules

Modules have the following structure:

<module>
    <module-head>
    Optional.
    The name of the module goes here, inside a h3.
    Inside of the h3 tag, you can make the title a link, if you want.
    </module-head>
    <module-body>
    Has a white background, the module contents all go in here, including submodules.
    </module-body>
    <module-foot>
    Optional.
    Want one of those clever links below your module content on the bottom right? Put it in here.
    If you want a link to also appear on the left, give it the "module-foot-left" class.
    </module-foot>
</module>





Submodules have the following structure:

<submodule>
    <submodule-head>
    Optional.
    This is where the title for the submodule goes, if you want to differentiate it somehow.
    Styling for this isn't standardized yet... see /missions/ for an example.
    Recommended to put the title inside an <h3>.
    </submodule-head>
    <submodule-body>
    Also optional.
    If you don't want to bother with a head/body distinction, you can just put content straight inside the submodule.
    </submodule-body>
</submodule>





(all tags are the class names of the relevant divs, unless otherwise stated)

You may want to put your submodules inside a <submodule-container> with
a <clearer>, if you’re floating them but don’t want other content to ride up.




CSS

Name IDs and classes using hyphens, not underscores or camelcase.
(e.g. “#front-page”, not “#front_page” or “#frontPage”). CSS file names
should use the same convention. (Not all of them do, but hopefully that
can eventually be corrected.)






Usage instructions for the code, pre and tt tags

If you’re interested in modifying the ‘Hints’ sections of the training
missions, here are some guidelines regarding the usage variations of the
code, pre and tt tags to keep in mind.

The CSS properties for the pre tag and the code tag are such that a pre element
has a newline before and after it and is on a newline itself and a code element
does not have a newline before or after it but is on a newline itself. A tt
element neither has a newline before or after it nor it is on a newline itself.

Note: As of HTML5, the tt tag has been deprecated.

Here are a few examples:

If you write:

<p>If you are on Linux, type: <opening tag>man diff<closing tag> at the command line.</p>





If you replace the “<opening tag>” and the “<closing tag>” above in the code
with pre tags, the output would be as follows:

If you are on Linux, type:

man diff

at the command line.





If you replace the “<opening tag>” and the “<closing tag>” above in the code
with code tags, the output would be as follows:

If you are on Linux, type:
man diff
at the command line.





If you replace the “<opening tag>” and the “<closing tag>” above in the code
with tt tags, the output would be as follows:

If you are on Linux, type: man diff at the command line.








Editing the training mission hints

While working on Issue 958 [https://openhatch.org/bugs/issue958], it was found that in the hints for training
missions, the “low” hint sometimes had trouble laying out its child elements
properly due to the CSS properties of its parent div and this caused the “low”
hints to display weirdly. To fix this issue, a new CSS property for ‘#low’ was
added to mysite/static/css/missions/base.css. However, here are some guidelines
for how to phrase things when editing the training mission hints:

The first sentence of a training mission hint should be a paragraph (p tag).

The first sentence of a training mission hint should be a full sentence.

Full sentences start with capital letters and end with periods.




JavaScript

This is a list of strategies for avoiding problems that have plagued OpenHatch
code in the past. Note: that the OpenHatch code does not yet follow this
guide. It ought to. Perhaps it can be a release goal in the future.


If it’s not a link, don’t make it a link

If there’s no fallback for non-JS users, don’t use the <A> tag.

Issue 478 [http://openhatch.org/bugs/issue478] covered a problem where a user was clicking on what appeared
to be a link. Because there is no JavaScript equivalent for the functionality
the user clicked, it simply should not be a link. (Though style-wise it
may look the same to the user.)




Don’t rely on “return false;”

It is easy to mistakenly use “return false;” at the end of a JavaScript
callback when you really mean event.preventDefault(). You can read more [http://fuelyourcoding.com/jquery-events-stop-misusing-return-false/] about
this problem.






Good references

This document by isobar [http://na.isobar.com/standards/] looks great.







          

      

      

    

  

    
      
          
            
  
Web API


The basics

The OpenHatch Python code provides some basic APIs that can be used by
JavaScript on the web. Currently, these APIs are only used by
JavaScript within the OpenHatch site itself. In the future, people
might want to re-use our data in off-site JavaScript apps, and we hope
to enable that.

This page documents the data export APIs that exist.




API v1 Profile data

The URL /+api/v1/profile/ is a RESTful API base URL. It has one endpoint,
portfolio_entry.

You can find out more about it interactively in your web browser, by
visiting a URL like
http://127.0.0.1:8000/+api/v1/profile/portfolio_entry/?format=json .

Additionally, if you have “cURL” (a common web page downloading tool),
you can run this command from your computer’s command prompt:

curl http://127.0.0.1:8000/+api/v1/profile/portfolio_entry/





Note that with curl (and with AJAX clients), you can (and should) omit
?format=json.

This exports data from the PortfolioEntry model in
mysite/profile/models.py. You can read the detailed code and
configuration behind it at mysite/profile/api.py. The API is powered by
the Tastypie Django app.

More information:


	Django Tastypie documentation: http://django-tastypie.readthedocs.org/en/latest/toc.html










          

      

      

    

  

    
      
          
            
  
Checking Coding Style Errors in Pull Requests with lint-review


Overview

We use lint-review [https://github.com/markstory/lint-review], an automated code linting bot that checks pull requests for code style errors (such as pep8 violations). It uses the Github API to fetch the changes, runs linters against them and comments on the pull request if any code style errors are there in the changes.




Configuration

The .lintrc file stores the configurations for the lint-review bot. You can find the .lintrc file for this project here [https://github.com/openhatch/oh-mainline/blob/master/.lintrc].







          

      

      

    

  

    
      
          
            
  
Issue tracking using GitHub Issues


Overview

We use GitHub Issues [https://github.com/openhatch/oh-mainline/issues] for tracking issues. The Managing Projects [https://help.github.com/categories/100/articles] section of
GitHub Help [https://help.github.com/] provides useful information about filtering, sorting, assigning,
and labeling issues.




Issue labels

We use Labels to categorize an issue’s priority, status, and type as well as
other helpful user information. The Bitesize label is used to indicate that
the issue is suitable for a new contributor to the project.




Historical note on issue tracking

Prior to using GitHub Issues, we used two other issue trackers. To preserve
historical information, issues that were imported from past trackers can be
identified by the user creator (@imported-from-roundup in the oh-mainline repo
and @bot-sunu in the oh-bugimporters repo).







          

      

      

    

  

    
      
          
            
  
Writing Training Missions

Training Missions are tools which help people learn the skills needed
to contribute to open source projects without burning their fingers.
They can be background information (Windows Setup [http://openhatch.org/missions/windows-setup/]), or more
involved (Subversion Training [http://openhatch.org/missions/svn], which creates repositories for each
user to work on).

Missions are made up of some Python code (“views”), and some HTML
(“templates”). OpenHatch uses some conventions to make developing new
training missions as simple as possible.


Note

This document currently covers Simple (non-interactive) Training
Missions. We are working to update it to describe interactive
missions, as well.




Simple Training Missions

Simple Training Missions provide users with step by step
documentation. As an example we’ll start a new mission to document how
to make missions (how meta!), cunningly named “Make a Mission”.

To begin developing a new mission, we need to create two directories:
one for the mission code, and one for the mission templates. Both are
stored in sub-directories of the OpenHatch repository
(oh-mainline; see Getting Started for more information).

To create the new directories:

$ cd oh-mainline/mysite/missions
$ mkdir makeamission
$ mkdir templates/missions/makeamission





The first directory we create is the code directory. The second is the
template directory.

It will help other developers work on your code if you use the same
name for both directories. Note that we’re making directories named
makeamission, not “Make a Mission”. That’s because the directory
name needs to be a valid Python package name, which means no spaces or
non-alphanumeric characters.

Within the code directory (makeamission), you’ll need
to create an empty file named __init__.py; this tells Python that
this directory is a package [http://docs.python.org/tutorial/modules.html#packages]. On Mac OS X and Linux, you can do this
by running the touch command:

$ touch makeamission/__init__.py





On Windows, just create the file with your favorite (or second
favorite) text editor.


Defining Steps

Missions are made up of a sequence of steps: each step has a little
bit of Python code and an HTML template.


Note

It may be helpful to refer to existing Mission code as you work on
yours: examples are a great way to learn. The Windows Setup
mission (in the setup directories) is an especially simple
example.



Create a file named views.py in your code directory; we’ll start
writing the Mission steps there.

The simplest type of Mission Step just renders a template. That’s what
we’ll start with. In views.py, start with the following code:

from mysite.missions.base import MissionBaseView


class StepOne(MissionBaseView):
    url = '/'
    template_name = 'missions/makeamission/index.html'
    view_name = 'main-page'
    title = 'Setting up Your Mission'





This Python code defines the first step in our new Mission. There are
a few things to note:


	StepOne is the name of the step’s class. This needs to be
unique for your steps in the Mission.


	MissionBaseView is the basic building block of Mission Steps and
provides some helpers you can use in the template.


	The url defines what the URL of this mission will be within
the Mission. This must begin with a /.


	The view_name (main-page in this case) allows us to refer to
this view in other views.


	The title will be displayed in the sidebar of the Mission.




After you’ve added the first step, let’s add a second step:

class StepTwo(MissionBaseView):
    url = '/templates'
    template_name = 'missions/makeamission/steptwo.html'
    title = 'Writing Mission Templates'





Note that here we’ve omitted view_name. When it’s omitted
OpenHatch uses the url setting (omitting the leading /) for
the view name.




Step Templates

Each of the Steps we’ve defined refer to a template: these templates
will contain the text content for each step. OpenHatch uses Django
templates [https://docs.djangoproject.com/en/1.3/topics/templates/], which add some logical functionality to plain HTML.

Let’s start with the first step, StepOne. In a new file
(templates/missions/makeamission/index.html), add the following
content:

{% extends 'missions/mission_base.html' %}
{% load base_extras %}

{% block mission_main %}
<div class='submodule fat'>
  <div class='head'>
    <h3>{{ title }}</h3>
  </div>
  <div class="body">

    <p>Real content here, please!</p>

    <p class="next_mission_link">
        <a href="{{ next_step_url }}">Go forward and make a template!</a></p>
  </div>
</div>

{% endblock mission_main %}





There are a few interesting things here:


	The first line tells OpenHatch that this page should be based on the
common Mission template.


	{{ title }} and {{ next_step_url }} are substitutions:
Mission views provide several conveniences so you don’t have to
repeat yourself. These include title (the step title),
next_step_url (the URL of the next step), and prev_step_url
(the URL of the previous step).




The template for the second step should be named steptwo.html,
which is what you specified in the class (StepTwo) above.




Mission Information

Missions are made up of a sequence of steps, so we need to define what
order those steps come in. Missions also have some information of
their own, like their name and an identifier.

We’ll define the sequence of steps and the metadata by adding the
following to our mission’s views.py:

class MakeAMission(Mission):

    mission_id = 'make-a-mission'
    name = 'Writing New Missions'

    view_classes = (
        StepOne,
        StepTwo,
    )





We also need to modify the import at the top of that file to read:

from mysite.missions.base import Mission, MissionBaseView








Making it Accessible

The final step to writing your Mission is to make it accessible on the
site by telling OpenHatch how to route the URLs. Django projects define
URL routing in a file cunningly named urls.py. You can find this
in the mysite directory. You can begin by opening urls.py.
You’ll need to tell it where the file views.py for your new mission
lives by adding an import statement near the top of urls.py right
after the import statements for the existing training missions like so:

import mysite.missions.makeamission.views





In urls.py, you’ll also find a list of URL patterns – regular
expressions which Django will use to match URLs and figure out where to
send requests. Finally, add the new mission by adding a new item after the
other missions:

(r'^missions/makeamission',
    include(mysite.missions.makeamission.views.MakeAMission.urls())),





Two important things to note:


	makeamission in the include and import statements above refer
to the directory you created, so you’ll need to make sure the name matches.


	MakeAMission is the name you give your Mission class.




Once you’ve added it to the URLs, you can start the server and visit
http://localhost:8000/missions/makeamission/ to see your new mission!









          

      

      

    

  

    
      
          
            
  
Adding a new bug tracker

One of the pillars of OpenHatch is helping project owners get in touch with
developers willing to help, by offering them easy to fix bugs where they can get
started. In order to do this, OpenHatch crawls bugtrackers of many projects and
features them in the site.

If you have a project that you want to add to OpenHatch you can do it very
easily following these steps.


	Go to http://openhatch.org/customs/


	In the “Tracker Type” select box select the bug tracker that your project uses. If your bug tracker is not in that list, it may be a good a idea to contact us and let us know.


	Click on “Add a tracker” to add a new tracker


	You will be directed to a form where you need to fill specific information about your tracker. This form changes depending on the tracker type.




For Trac and Roundup:


	
	Fill the new tracker form like this:

	
	Tracker name: Name of your project


	Base url: This is the URL to the homepage of the Trac tracker instance. Remove any subpaths like ‘ticket/’ or ‘query’ from this.


	Bug project name format: This field contains instructions of how to fill it, but if you are not sure, probably {tracker_name} is the best option.


	Bitesized type: Choose the field that can help identify a bug as bite-sized. If you don’t find the field you need in the select box, you may have to contact us to add it.


	Bitesized text: The value that the Bitesized type contains for a bite-sized ticket.


	Documentation type: Ditto Bitesized type.


	Documentation text: Ditto Documentation text.


	As appears in distribution: For most cases you can leave this field empty.










	
	Click “Next” and you will be directed to another form:

	
	Url: Enter the URL of the CSV representation of a search result that only returns bitesized bugs for your project. Here is an example of how the value for that field looks for the GHC Tracker (Trac): hackage.haskell.org/trac/ghc/query?status=new&group=difficulty&format=csv&order=id&difficulty=Easy+%28less+than+1+hour%29&col=id&col=summary&col=status&col=owner&col=milestone&col=component&col=version&desc=1


	Description: Enter a description of the results that the search query returns.










	Click “Finish”.








          

      

      

    

  

    
      
          
            
  
About the OpenHatch community

The OpenHatch website is an open source, free software project. There are many
ways that individuals and organizations can make contributions to it. Here’s
what you can expect when attempting to contribute code and documentation.


We’re friendly and respectful

The existing community is proud of its reputation for being friendly, welcoming,
and helpful. We want to accept code, documentation, design, and other contributions
from as many people as possible – that can include you!

We have people of all backgrounds in the project. Diversity is one of our project’s
strengths.

Generally, to contribute directly to the project’s growth, you can submit patches
or Github.com pull requests. You can read more about that.




Community structure

Here are some sub-groups of the OpenHatch community:



	Contributor: This refers to anyone who makes a contribution that gets put
in the main OpenHatch git repository. To become part of this, just show up
with a patch or pull request. (We’ll help you do that on the mailing list or IRC.)


	Github commit group: These are the people who can push changes to our main
git repository on Github. To become part of this, submit a few high-quality
code reviews and ask the project lead for this power.


	“Login team”: These are the people who can SSH into the main OpenHatch server.
To become part of this, submit a few high-quality code contributions and
then ask the project lead.


	“Project lead”: Asheesh Laroia is the project lead.  You can contact him with questions
about the project.







Anyone can contribute to OpenHatch, through submitting a patch or pull request.

You might be interested to know that OpenHatch is also a non-profit [https://openhatch.org/about/],
with its own governance. The non-profit and the code development team
share some people, but they do not share a power structure.







          

      

      

    

  

    
      
          
            
  
Contact Us

Talk to us on IRC (#openhatch on irc.freenode.net).  Not familiar with IRC? See Chat with us on IRC below!

Join our contributors mailing list [http://lists.openhatch.org/mailman/listinfo/devel].

Or say hi to us on the project blog [http://openhatch.org/blog], Identi.ca [http://identi.ca/openhatch], Twitter [http://twitter.com/openhatch], and Facebook [http://facebook.com/pages/OpenHatch/108578243652].


Chat with us on IRC

You can usually find us on #openhatch on irc.freenode.net - a friendly place to say hi and get answers to questions interactively.

If you don’t know how to use IRC, you can use our installation guide [https://openhatch.org/wiki/OSCTC/Laptop_setup#Goal_.231:_install_an_IRC_client] or just click on this link to a web
chat interface [http://webchat.freenode.net/?channels=#openhatch].

Also, there’s an excellent FAQ at botbot.me [https://botbot.me/irc-guide/]

Are you trying to figure out who everybody is? Many of the people are part of
the OpenHatch project [http://openhatch.org/projects/OpenHatch].




Quick start

/server irc.freenode.net

/join #openhatch

/nick newnickname

/me waves hello

# The /me is an action message.
# Type /me 'does anything'
# Example:  /me waves hello
# What it looks like: * bossmom waves hello





More details: http://www.ircbeginner.com/ircinfo/ircc-commands.html







          

      

      

    

  

    
      
          
            
  
Login Team

The Login Team is the people who can SSH into the main deployment of
OpenHatch.

In order to subscribe to the monitoring-private email list or have push access
to Github, you have to be part of the login team.


Current members


	Jack Grigg (pythonian4000)


	Asheesh Laroia (paulproteus)


	Jessica McKellar (jesstess)


	John Morrissey (jwm)


	Karen Rustad (aldeka)


	Elana Hashman (ehashman)







How to join


	Email asheesh at asheesh.org…


	Include a copy of the OpenHatch Servers Access & Usage Policies at
Login Team Agreement


	“Digitally sign” it by typing your name at the end of it (and/or PGP sign,
if you like)


	(Here’s a summary of the document: You agree to be nice, respectful, and
communicative. Asheesh can kick you out of the login team, but he will also
try to be nice, respectful, and communicative. If you find a security hole,
or otherwise discover a bad problem, you will contact other people and let
us know. If you take reasonable actions like trying to diagnose the
security problem, that’s cool. If you exploit a security hole to do
something that you are actually permitted to do, then that’s pretty smart
and crafty of you, and you should tell you did it so we know how cool you
are.)






	Then if Asheesh agrees you should be on it, he’ll let you on. You should hear
back within four days.







What you get, when you’re on the login team


	SSH key access to the deploy user account on linode and linode2.


	When we have a VM hosted by OSU OSL, you’ll get a personal account and sudo
permission.


	SSH key permission to push to the Github openhatch/oh-mainline repository.







How to deploy new versions


	See Deployment










          

      

      

    

  

    
      
          
            
  
Login Team Agreement


How to use this document

If you want to become part of the Login Team, you have to
take this document, copy it into an email, and send it to asheesh at
asheesh.org.

Inversely, this document serves as a record to visitors to the site: you can
read it to find out what have people agree to in order to get shell access.

—




OpenHatch Servers Access & Usage Policies

Version 1.1

Version 1.0 of the OpenHatch Servers Access & Usage Policies becomes effective
on April 30, 2011. Version 1.1 fixes some trivial typographic errors.


Introduction

This document describes the policies for people who have direct (e.g., SSH)
login access to any account on the OpenHatch Servers. When you are granted this,
you become part of a group of people we call the Login Team.




General statement

Privilege

Access to OpenHatch servers is a privilege, not a right or a commercial service,
and Asheesh Laroia and the Login Team reserve the right to revoke this privilege
at any time, without prior notice. An explanation will be given within 48 hours.
Asheesh promises to try to have a reasonable conversation with you about the
loss of access, including (if you ask for it) the possibility of gaining this
privilege again.

Guarantees

There is no guarantee of service. Although the Login Team will do its best to
assure that everything functions perfectly, they can’t give any guarantees.

Penalties

If someone violates the rules set out in Policies section of this document, as
Asheesh’s sole discretion, then Asheesh will revoke that person’s access. See
also the “Privilege” section.




Rules and Guidelines

The following section defines OpenHatch’s Rules and Guidelines.


	The rules are binding and may not be violated.


	The guidelines specify rules that may be violated if necessary but we would
rather one did not.





The Rules

You will not carry out any willful, deliberate, reckless or unlawful act,
interfere with the work of another developer or jeopardize the integrity of
data, equipment, systems programs, or other stored information.

You will not use the OpenHatch servers for financial gain or for commercial
purposes, including consultancy or any other work outside the scope of official
duties or functions for the time being, without specific authorization from
Asheesh to do so.

You will not use OpenHatch servers for any unlawful activities whatsoever.

You will not deliberately interfere with or alter the integrity of the OpenHatch
servers, by doing any of the following:


	permitting another individual to use your shell login account;


	impersonating other individuals in communication without their permission;


	attempting to capture or crack passwords or encryption, unless you have
permission from the account-holder to do that;


	destroying or altering data or programs or anything belonging to other users,
unless you are you doing something a user has explicitly permitted you to do.




You will not restrict or deny access to the system by legitimate users.

You will not transmit threatening or harassing materials.

When you copy private data onto a non-Login Team computer, for example user
passwords that you copy through a MySQL dump, you promise to keep them safe on
the computer you copied them to. You will try to delete them reasonably quickly,
and should try to use the public data snapshots wherever possible.

You do not have to delete session IDs that come to you via the
monitoring-private list, but you should not share them (because sharing session
IDs can permit people to impersonate users).

You will not use OpenHatch servers in a manner which constitutes net abuse.

You will not allow any bot net or other criminal infiltration of the OpenHatch
servers through carelessness or abuse, to the best of your ability. If you think
you found or created a security hole, you will tell Asheesh. He promises to be
nice to you in his acknowledgment of the issue.




The Guidelines

Processes: Do not run any long running process without the permission of
Login Team. If you come up with cool ideas of for processes to run, you should
have a conversation with the rest of the Login Team first. Running servers of
any sort (this includes IRC bots) without prior permission from Login Team is
also forbidden. Avoid running processes that are abusive in CPU or memory. If
necessary Login Team will clean up such processes without warning.

WWW pages: In general, web space on the OpenHatch Servers is provided
specifically for the purpose of serving the webapps of OpenHatch itself, whose
goal is to help OSS projects get new contributors. Using your login account to
create private ‘vanity’ pages on OpenHatch Servers is discouraged. (Obviously,
the OpenHatch web app itself provides a way to create vanity pages; you may
use that.)

Homedir: If you receive an email notification that your homedir is large and
that more free space is needed then please promptly take action. The Login Team
may find it necessary to clean up without warning.

Tunneling: If you need to use the OpenHatch servers as the end of a tunnel,
like an SSH tunnel, try to talk to Asheesh first to make sure your use is okay.
(If you had to do it in a hurry, try to tell him afterward.)

Mail/News: Don’t use the OpenHatch servers for reading email. If you want to
forward your email address somewhere else, that’s fine; create a .forward file.
If a developer becomes unreachable for a prolonged time, his/her accounts, data
and mail forwarding/filtering/etc may be disabled until the person reappears.

I HAVE READ AND AGREED TO THE FOLLOWING TERMS AND CONDITIONS

(Erase this line, and type your name here, if you agree)











          

      

      

    

  

    
      
          
            
  
Web Analytics Team

This is the set of people who have access to look at aggregate logs of
our page views. Because we give people access to aggregated
information, we expect it not to be personally identifiable
information, so the privacy implications should not be huge.


Purpose

When design or code or documentation or publicity or other
contributors are thinking about what changes to make to the website,
it is often very helpful to be informed by data about how people are
using the site.




Who may join, and how to join

Any reasonably trustworthy contributor (such as: people who have shown
up to the #openhatch IRC channel and seem to get along fine with other
members; people who have contributed code to the project; or so forth)
is welcome to join.

We might take your access away if you seem to not have been using it
for one month. That is just constant housekeeping, not because we have
stopped trusting you. If we do that, we will try to notify you (but
might forget to), and you are free to ask for it back.

To join:

Email devel at lists.openhatch.org with a brief message, such as:

I’d like to join the Web Analytics Team because I want to know more about
__________ and think that our aggregate page logs will help with that.

You should expect someone to reply to you within about 4 days with a
yes or a no.




Technology

Right now, we use Google Analytics. You can log in here:


	https://www.google.com/analytics/




People on the Login Team are permitted to have “Manage”-level access.

People on the Web Analytics team are permitted to have “Edit”-level
acces or “View”-level access.

The team isn’t technology-specific. If we add another web analytics
tool, we should give these people a similar level of access.




Members

Manage level:


	Asheesh Laroia




Edit level:


	Britta Gustafson


	Susan Tan










          

      

      

    

  

    
      
          
            
  
Domain Team

The Domain Team is the team of people who can modify settings of the
openhatch.org domain, such as what IP address it points to. The team
also has the same power for all openhatch-owned domains.

Since the team has somewhat limited membership, one goal is to be
responsive to requests from non-members who want to add or edit our DNS
settings.


Membership

It is difficult to delegate access very widely for this, as anyone
with control over the openhatch.org DNS can probably gain any other
privilege they want. Membership is open to Login Team members or Board
members who merit a special degree of trust.

Current members:


	Asheesh Laroia (paulproteus)


	Shauna Gordon-McKeon (shauna)







How to join

Email asheesh at asheesh.org with at least one sentence to answer why
you need domain/DNS-level access for the thing you’re working within
OpenHatch.

You should expect a response within 4 days. If you don’t get one, feel
free to send another email that is CC: devel@lists.openhatch.org.




What you get, when you’re on the team


	CloudFlare DNS password. (Username is asheesh@openhatch.org for now.)







Information useful to members


	openhatch.org DNS is hosted by cloudflare.com.


	The openhatch.org domain is configured in gandi.net. Currently that
still uses Asheesh’s personal account, but we should change that.


	CloudFlare sends emails to asheesh at openhatch.org. We should
change that.










          

      

      

    

  

    
      
          
            
  
Collaboration tools

This document lists some communication and collaboration tools that
people in the OpenHatch community use in order to work together
effectively. The purpose of this part of the documentation is to help
people who are new to these tools quickly become oriented, and to help
us share tips on how to use these tools well.


Freenode IRC

Developers, event organizers, documentation writers, bug filers, and
basically everyone in the OpenHatch community sometimes uses IRC as a
real-time chat system.

See https://openhatch.org/wiki/Contact to read more about how to join
us there.




Email lists

We use the email lists at http://lists.openhatch.org/ (hosted by the
free-software Mailman package).

These lists are typically publicly archived, and typically are open
for anyone to join. Archives are currently performed by the
“pipermail” software tool, which is widely-used but not universally
loved.




Etherpad

Etherpad is a real-time, rich-text capable, free software text editor.

People discussing a topic on IRC often use it to think aloud so they
can write more than a few sentences at a time, and to get feedback on
an idea that is a paragraph or longer.

The Etherpad software is widely available; we typically use the
websites running Etherpad hosted by Mozilla or Wikimedia. To create a
new Etherpad document, one procedure is:


	Think up the name for the document (for example, oh-just-testing)


	Visit https://etherpad.mozilla.org/oh-just-testing


	Wait for it to ask you, “Do you want to create this pad?” and answer yes.




This way, you can choose the name of the pad, rather than accepting
the default behavior of having a randomly-generated name.

We typically treat Etherpads as temporary storing places for
documents, since it is easy to misplace the link to the
document. Therefore, it’s usually a good idea to export a document as
HTML from within the Etherpad interface, and send that HTML document
to the devel list.




Google Docs

Google Docs is a free-of-cost collection of collaboration tools for
writing text documents, spreadsheets, and other such things.

We sometimes use that, too.







          

      

      

    

  

    
      
          
            
  
Quotes database

This document explains our IRC quotes database.


The URL to the quotes DB

http://boiling-refuge-7775.herokuapp.com/




How and when to submit a new quote

Let’s say something interesting happens on IRC. For example, if your
friend stops by the IRC channel and says something amusing:

<friend> hey, I just realized
<friend> oh-mainline... the oh starts for OpenHatch...
<friend> but it's also, like -- oh! mainline!





and you want to put it in the IRC quotes database. Here are the steps
you take:


	Copy the text to your clipboard on your computer.


	Visit the quotes database at http://boiling-refuge-7775.herokuapp.com/.


	Click submit quote


	Enter your quote in the DB, and click Submit


	See the glorious “Your quote has been submitted and is now pending
approval!” message


	Send a private message to paulproteus to ask them to approve it.







How to approve quotes


	Visit the login page at
http://boiling-refuge-7775.herokuapp.com/?m=userlogin


	Log in (if you need an account, ask paulproteus)


	Visit http://boiling-refuge-7775.herokuapp.com/?m= and see the list of quotes.


	Notice that some are very pale! Either approve or delete them.


	To moderate, visit http://boiling-refuge-7775.herokuapp.com/?m=panel
and enter the 4-character short name into the permaid box. Choose either do_approved or do_deleted to mark it respectively as approved or deleted.










          

      

      

    

  

    
      
          
            
  
Ticket tracking

This document explains how we handle inbound email to the OpenHatch organization.

Our “ticket tracker” is a tool we use to reply to emails people send to OpenHatch. The “ticket tracker” is a fairly internal tool, although if you’re excited about getting involved, we welcome you! Crucially, it is distinct from our “bug tracker,” which tracks issues in the open source code of the OpenHatch project. By contrast, the ticket tracker helps us keep track of email conversations.


The URL to the ticket tracking site

http://tickets.openhatch.org/rt/




Our normal workflow

Somebody sends an email to hello@openhatch.org. By default, this ticket goes into the “General” queue and is not assigned to anybody.

To move the conversation forward:

A ticket responder can reply by email with a helpful message, which changes the ticket status from “new” to “open”, or they can write a reply specifically to support-comment at tickets.openhatch.org to write a message only viewable by ticket responders.

On the RT website, a ticket responder can click “reply” to reply with a helpful message, or they can click “comment” to write a message only viewable by ticket responders.

To keep the tickets organized:

On the RT website, go to a ticket and visit the “basics” menu option (in the grey bar) to put the ticket in the appropriate queue, assign the ticket to somebody, and assign a new status to the ticket.

When a ticket is resolved, we should assign it the status “resolved”.

In the future:

We plan to also be able to assign queues, ownership, and statuses by email (using CommandByMail [http://search.cpan.org/dist/RT-Extension-CommandByMail/lib/RT/Extension/CommandByMail.pm]). We have a ticket filed with the hosting provider to set this up.

Workflow notes:

There are some slight differences from the default RT workflow, which might be worth highlighting in case you’re comparing this with past RT experiences or the official docs:


	We’ve disabled the “Auto-Reply to requestor” scrip. We thought this seemed impersonal; additionally, Asheesh was concerned it would cause us to send replies to spam we receive.


	We’ve disabled the scrip that causes the requestor to receive an email when the ticket is marked as “resolved”. We thought this seemed impersonal.







Request Tracker Admin Team

These people have “privileged” accounts in RT and the password to the separate “root” account within RT:


	Britta


	Asheesh


	Shauna







How to help out

If you want to help answer people’s questions that they email to OpenHatch, please email us and we’ll give you an account with some degree of appropriate privilege to do that. We haven’t configured this yet, but we’re excited to figure it out!




hello@ migration

(This section written on Sun Feb 16. Hopefully, it will go away by the end of February.)

Right now, hello at openhatch.org forwards to a bunch of people.

In the near future (~1 week from now), we’ll turn that forwarding off. People who were on the hello@ alias can get something similar to what they used to have by requesting an RT account.

The best way to request an RT account is to email hello@, as we already have things set up so that emails to hello@ will create a ticket.




Importing past mails

(This section written on Sun Feb 16. Hopefully, it will go away by the end of March.)

We haven’t imported any past threads or emails yet.

For bulk import of historical archives, Asheesh hopes to get to this in the future (the next 2 to 6 weeks). He’ll make an “archive” queue that hopefully contains one “ticket” per email thread. That way, new email helpers can read the archives within RT.

If you want to reply to a hello@ mail that isn’t in RT yet, try to use the following workflow:


	Forward the most recent mail in the thread to support at tickets.openhatch.org.


	Modify the ticket so the person who sent it is the “Requestor.”


	(Optional: Move it into the appropriate queue.)


	Reply to the ticket via your email, now that it has a ticket number.




That’s a bit cumbersome. Sorry about that.




How the ticket tracker is administered


	tickets.openhatch.org points at an IP address of a VM run by Gossamer Threads.


	They are generously donating their hosted RT service, and for this, we plan to thank them on the OpenHatch sponsors page.


	From what I understand, we have a virtual machine that they administer. We can file support tickets with them, and we can also FTP into the machine and make changes if we want.


	hello at openhatch.org forwards to a few email addresses, including bountyarchive at rose.makesad.us; a procmail rule there forwards the email further into our RT instance. This is hackish and should be replaced in the future. (This remark written on 2014-02-16.)







Further thoughts

Maybe it would be interesting for us to CC: the ticket tracker on emails to sponsors, generally. That way, we’d have a shared archive.







          

      

      

    

  

    
      
          
            
  
How to run an OpenHatch sprint

This is a brief set of steps for anyone interested in getting people
together to improve the OpenHatch codebase or web app project. It is
based on The In-Person Event Handbook [http://opensource-events.com/]. We call these “sprints”,
after the terminology at pythonsprints.com.


Step 1: Figure out what you want to accomplish at the sprint

Some ideas for this can be found in the “What do you want to
accomplish at this event?” section of The In-Person Event Handbook [http://opensource-events.com/].




Step 2: Pick a date & venue

The date and venue go hand-in-hand, as you might have to reserve
space. See the Bay Area Debian Shotgun Rules [http://bad.debian.net/shotgun_rules.txt] for good things to
think about. Power and wifi and laptop-friendliness are especially
important.




Step 3: Find funding (optional)

As of the time of writing (December 2013), the Python Software
Foundation is happy to sponsor food. Visit the Python Sprints Call
for Applications [http://pythonsprints.com/cfa/] for information on how to apply. It’s nice to be
able to say that food is sponsored, so people are more likely to
attend.

In Asheesh’s opinion, if food sponsorship is asked-for but not yet
confirmed, it’s fine to say in the announcement email that it’s
pending confirmation.




Step 4: Figure out the maximum number of people we can support

Given the goals you set, perhaps we only have mentorship resources
available for 4 newcomers or so. In that case, it’s best to ask people
to RSVP to you, perhaps by creating an event page on eventbrite.com or
by asking people to send a personal email to the event organizer.




Step 5: Get the word out

You should definitely send an email to the OH-Dev mailing list [http://lists.openhatch.org/mailman/listinfo/devel]. It’s
also a good idea to send (even if brief) personal emails to OpenHatch
contributors in your city.

Write your announcement in the style recommended by the Bay Area Debian
Shotgun Rules [http://bad.debian.net/shotgun_rules.txt].

Consider also Tweeting about it, or getting the pythonsprints.com blog
to send your announcement, or sending an announcement to the Python
Meetup in your city. (It is OK not to do that if you suspect it would
result in more RSVPs than the event can support.)




Step 6: Read the In-Person Event Handbook and follow its instructions

Now is a great time to read the rest of The In-Person Event
Handbook [http://opensource-events.com/] and think about follow-up processes, validating
documentation, and the preferred modes of communication for attendees
physically at the sprint.




Food sponsorship logistics notes

Typically, the Python Software Foundation (or any food sponsor) wants
to see an itemized receipt with the food and drink items on it. If the
sprint is at a venue where people typically order one item at a time,
you can simplify life by leaving a tab open and having just one person
pay the bill. Then that person can be the one to get reimbursed.

If a person with an OpenHatch Foundation card is around (such as
Asheesh or Shauna), a good idea is to have that card be the one that
pays the tab. Then the owner of that card is the only one who has to
deal with the reimbursement logistics.







          

      

      

    

  

    
      
          
            
  
THANKS


	The Free Software projects that we depend on - see the vendor/ directory for
a list.


	Our contributors and consultants are listed at
http://openhatch.org/projects/OpenHatch. If you’ve helped to create
OpenHatch, you deserve to be listed there!


	The fantastic people who have helped us:


	Nelson Pavlosky [http://skyfaller.net]


	Shotput Ventures [http://shotputventures.com], who mentored and funded us in the summer of 2009.


	The Institute for Security, Technology, and Society [http://ists.dartmouth.edu] and the
Neukom Institute [http://dartmouth.edu/neukom], both at Dartmouth, who sponsored Parker [http://madebyparker.com]
Phinney [http://openhatch.org/people/pyrak]’s internship during the Dartmouth winter 2010 term.


	Google Summer of Code [http://code.google.com/soc/], who sponsored John [http://jstump.com] Stumpo [http://openhatch.org/people/stump]’s
internship during the summer of 2010.


	Jerold Camacho [https://twitter.com/korapsyon], who reported a cross-site scripting issue in 2013.






	See CREDITS for other files we use.








          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Documentation: Adding a User and Project


Adding a User

the OpenHatch community welcomes its users to actively participate in various
activities such as contributing to a project, finding a bug and adding your own project.

In order to do so you have to sign up for a user account.
The basic steps that are required to do so are:


	Go to the OpenHatch website: http://openhatch.org/


	On the Front page you will see a ‘log in/sign up’ link in the menu.


	Click on the link. You will be redirected to a login page.


	OpenHatch saves you time by allowing you to use your existing
account from one of many networking sites.


	Choose the account that you want to sign up with
or click “Sign up without OpenID” on the right hand side.


	Once the verification process is complete you will be redirected to the registration page.


	Type in your username and click on ‘ok’.







Adding your Project

If you have a project that you want to add to OpenHatch
so that developers may contribute and resolve bugs
you can do so by following these simple steps:


	Log in with your chosen account on OpenHatch.


	Click on the ‘Add your project’ link on the front page.


	You will be directed to the /guide/ page.


	Click again on ‘Add a project’ listed in the grey box on the left side.


	You will be directed to the /editor/ page of your profile.
Click on ‘Add a project’ in the ‘Manage projects’ section.


	A form will be displayed then fill it out as follows:


	Type a project name:

	
	A suitable name for your project.






	Describe this project:

	
	A short description about your project.






	Check the ‘receive maintainer updates’ Box if you want to receive updates geared towards project maintainers, including:

	
	New contributors


	People who click the ‘I want to help’ button






	Describe your involvement:

	
	Your involvement could include patches, translations, design ideas, leadership roles, or any other kind of contribution.






	Some things you could link to:

	
	bug report


	archived post to a mailing list


	staff page


	source code repository










	Once you are done, click on ‘Save and Publish’.




Your Project will be published and you can view it by clicking on your profile.
In your profile you will see a list of all your saved projects.
You can add/edit or delete a project by clicking on the ‘add/edit’ link
in the top right of the Projects section.
You can also add a bug tracker by clicking on the ‘Add project’s bugs’ link.
You can find more information about Bug Trackers in the wiki (https://openhatch.org/wiki/Bug_trackers) or OpenHatch Documentation.







          

      

      

    

  _static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to OpenHatch’s Documentation
        


        		
          Contributor’s Guide
          
            		
              Project Overview
            


            		
              Key Features of openhatch.org
              
                		
                  List of features
                


              


            


            		
              Getting Started
              
                		
                  First steps
                


                		
                  Next steps
                


                		
                  Getting unstuck
                


              


            


            		
              Installation
              
                		
                  Overview
                


                		
                  Essentials
                


                		
                  Output Samples
                


              


            


            		
              Testing Basics
              
                		
                  Running the OpenHatch test suite
                


                		
                  Additional testing information
                


              


            


            		
              Documentation Basics
              
                		
                  Source files
                


                		
                  reStructuredText and Sphinx
                


                		
                  Style
                


                		
                  Changing or Adding Documentation
                


              


            


            		
              How we handle contributions
              
                		
                  As a contributor
                


                		
                  As a reviewer
                


              


            


          


        


        		
          Technical Guide to Development and Documentation
          
            		
              Documentation Style Guide
            


            		
              Layout of OpenHatch’s source code
              
                		
                  Directory structure
                


                		
                  Informational Files
                


                		
                  dotfiles
                


                		
                  Other files and executable files
                


              


            


            		
              Advanced installation
              
                		
                  Overriding local settings
                


                		
                  Automated testing
                


                		
                  Optional dependencies
                


                		
                  Maintenance
                


              


            


            		
              Working with git
              
                		
                  Issues with Pull Requests
                


                		
                  Become a git Expert
                


              


            


            		
              Advanced testing
              
                		
                  Tests: An overview
                


                		
                  General testing tips
                


                		
                  Details specific to OpenHatch
                


                		
                  About fixtures
                


                		
                  Mocking and patching
                


                		
                  Testing with Twill, versus the Django test client
                


              


            


            		
              Deployment
              
                		
                  Prerequisites
                


                		
                  How the deploy script works
                


                		
                  Recommended way to use the deploy script
                


                		
                  Notes about the deployment
                


                		
                  Other sites we host
                


              


            


            		
              Deploying to Heroku
              
                		
                  Overview
                


                		
                  Install the Heroku toolbelt and log in
                


                		
                  Create a Heroku app
                


                		
                  Set up the database
                


                		
                  Visit your app on the web
                


                		
                  Troubleshooting
                


              


            


            		
              Maintenance tasks
              
                		
                  Importing data snapshots
                


                		
                  How to run the bug importer
                


                		
                  Run the hourly tasks related to profiles
                


                		
                  Adding jQuery UI components
                


                		
                  Editing the website’s CSS
                


              


            


            		
              Adding a new bug tracker via git
              
                		
                  Clone the repository
                


                		
                  Overview of steps
                


                		
                  In a little more detail
                


                		
                  Submit a patch
                


              


            


            		
              Developer Notes
              
                		
                  January 2015 Notes
                


              


            


          


        


        		
          Operations Guide
          
            		
              Monitoring
              
                		
                  The basics
                


                		
                  Access
                


                		
                  Notifications
                


                		
                  Making changes
                


                		
                  Viewing the web interface, and handling the daemon
                


                		
                  In case of emergency
                


                		
                  TODOs
                


                		
                  Related
                


              


            


            		
              Continuous Integration
              
                		
                  Overview
                


                		
                  Travis CI
                


                		
                  Jenkins
                


                		
                  Future work
                


              


            


            		
              Backups of the live site
              
                		
                  Overview
                


                		
                  Details
                


                		
                  Restoring
                


                		
                  More info about encryption
                


              


            


            		
              Emergency operations for the OpenHatch server
              
                		
                  What to do when the site isn’t working
                


                		
                  Lish: Emergency reboots, and more
                


                		
                  To get your key in the list
                


              


            


            		
              WordPress theming
              
                		
                  Overview
                


                		
                  Details
                


                		
                  Editing the Wordpress CSS
                


                		
                  Related
                


              


            


            		
              Front-end style guide
              
                		
                  HTML/CSS
                


                		
                  Usage instructions for the code, pre and tt tags
                


                		
                  Editing the training mission hints
                


                		
                  JavaScript
                


                		
                  Good references
                


              


            


            		
              Web API
              
                		
                  The basics
                


                		
                  API v1 Profile data
                


              


            


            		
              Checking Coding Style Errors in Pull Requests with lint-review
              
                		
                  Overview
                


                		
                  Configuration
                


              


            


            		
              Issue tracking using GitHub Issues
              
                		
                  Overview
                


                		
                  Issue labels
                


                		
                  Historical note on issue tracking
                


              


            


            		
              Security Considerations for the OpenHatch Application
              
                		
                  Policy
                


                		
                  Known Issues
                


              


            


          


        


        		
          Tutorials
          
            		
              Writing Training Missions
              
                		
                  Simple Training Missions
                


              


            


            		
              Adding a new bug tracker
            


          


        


        		
          Community Guide
          
            		
              About the OpenHatch community
              
                		
                  We’re friendly and respectful
                


                		
                  Community structure
                


              


            


            		
              Contact Us
              
                		
                  Chat with us on IRC
                


                		
                  Quick start
                


              


            


            		
              Login Team
              
                		
                  Current members
                


                		
                  How to join
                


                		
                  What you get, when you’re on the login team
                


                		
                  How to deploy new versions
                


              


            


            		
              Login Team Agreement
              
                		
                  How to use this document
                


                		
                  OpenHatch Servers Access & Usage Policies
                


              


            


            		
              Web Analytics Team
              
                		
                  Purpose
                


                		
                  Who may join, and how to join
                


                		
                  Technology
                


                		
                  Members
                


              


            


            		
              Domain Team
              
                		
                  Membership
                


                		
                  How to join
                


                		
                  What you get, when you’re on the team
                


                		
                  Information useful to members
                


              


            


            		
              Collaboration tools
              
                		
                  Freenode IRC
                


                		
                  Email lists
                


                		
                  Etherpad
                


                		
                  Google Docs
                


              


            


            		
              Quotes database
              
                		
                  The URL to the quotes DB
                


                		
                  How and when to submit a new quote
                


                		
                  How to approve quotes
                


              


            


            		
              Ticket tracking
              
                		
                  The URL to the ticket tracking site
                


                		
                  Our normal workflow
                


                		
                  Request Tracker Admin Team
                


                		
                  How to help out
                


                		
                  hello@ migration
                


                		
                  Importing past mails
                


                		
                  How the ticket tracker is administered
                


                		
                  Further thoughts
                


              


            


            		
              How to run an OpenHatch sprint
              
                		
                  Step 1: Figure out what you want to accomplish at the sprint
                


                		
                  Step 2: Pick a date & venue
                


                		
                  Step 3: Find funding (optional)
                


                		
                  Step 4: Figure out the maximum number of people we can support
                


                		
                  Step 5: Get the word out
                


                		
                  Step 6: Read the In-Person Event Handbook and follow its instructions
                


                		
                  Food sponsorship logistics notes
                


              


            


            		
              THANKS
            


          


        


        		
          Project Overview
        


        		
          Key Features of openhatch.org
          
            		
              List of features
              
                		
                  OpenHatch Friends and Fans
                


                		
                  Site visitors
                


                		
                  Open Source Contributor
                


                		
                  Open Source Project Maintainers
                


              


            


          


        


        		
          Getting Started
          
            		
              First steps
              
                		
                  Getting the source code
                


                		
                  Installing and running a local development site
                


              


            


            		
              Next steps
              
                		
                  Get in touch
                


                		
                  Read more documentation
                


                		
                  Start contributing!
                


              


            


            		
              Getting unstuck
              
                		
                  Doing searches:
                


              


            


          


        


        		
          Installation
          
            		
              Overview
            


            		
              Essentials
              
                		
                  Open up a command prompt
                


                		
                  Get the code from the GitHub repository
                


                		
                  Set up the database
                


                		
                  Run the site
                


                		
                  You’re done
                


              


            


            		
              Output Samples
            


          


        


        		
          Testing Basics
          
            		
              Running the OpenHatch test suite
              
                		
                  Running the test suite without warnings
                


                		
                  Running a subset of tests
                


              


            


            		
              Additional testing information
            


          


        


        		
          Documentation Basics
          
            		
              Source files
            


            		
              reStructuredText and Sphinx
            


            		
              Style
            


            		
              Changing or Adding Documentation
              
                		
                  Making changes to documentation via pull request
                


                		
                  Making changes to documentation via readthedocs/Github editor
                


              


            


          


        


        		
          How we handle contributions
          
            		
              As a contributor
              
                		
                  Creating a pull request
                


                		
                  Submitting a pull request
                


                		
                  Permit us to share your work
                


              


            


            		
              As a reviewer
              
                		
                  Apply the pull request to your local repository
                


                		
                  Review the pull request for correctness and cleanliness
                


                		
                  Push and deploy
                


              


            


          


        


        		
          Documentation Style Guide
        


        		
          Layout of OpenHatch’s source code
          
            		
              Directory structure
            


            		
              Informational Files
            


            		
              dotfiles
            


            		
              Other files and executable files
            


          


        


        		
          Advanced installation
          
            		
              Overriding local settings
            


            		
              Automated testing
              
                		
                  Postfix, postmap and testing
                


              


            


            		
              Optional dependencies
              
                		
                  Re-scaling images
                


                		
                  Bug import dependencies
                


                		
                  Bug Importers
                


                		
                  Training missions: System tools
                


              


            


            		
              Maintenance
            


          


        


        		
          Working with git
          
            		
              Issues with Pull Requests
              
                		
                  Helpful tips for new contributors
                


                		
                  Resolving Merge Conflicts
                


              


            


            		
              Become a git Expert
              
                		
                  Alias
                


                		
                  git-extras
                


              


            


          


        


        		
          Advanced testing
          
            		
              Tests: An overview
              
                		
                  What a basic test looks like
                


                		
                  When a test fails
                


              


            


            		
              General testing tips
              
                		
                  Read the official Django testing guide
                


                		
                  How to write code that is easy to test
                


              


            


            		
              Details specific to OpenHatch
              
                		
                  We regularly run Automated Testing
                


                		
                  Where to write your tests
                


                		
                  The OpenHatch test case helper class
                


                		
                  The subversion missions test cases
                


              


            


            		
              About fixtures
              
                		
                  To run your tests
                


                		
                  To run just a few specific tests
                


              


            


            		
              Mocking and patching
            


            		
              Testing with Twill, versus the Django test client
            


          


        


        		
          Deployment
          
            		
              Prerequisites
            


            		
              How the deploy script works
            


            		
              Recommended way to use the deploy script
            


            		
              Notes about the deployment
            


            		
              Other sites we host
            


          


        


        		
          Deploying to Heroku
          
            		
              Overview
            


            		
              Install the Heroku toolbelt and log in
            


            		
              Create a Heroku app
            


            		
              Set up the database
            


            		
              Visit your app on the web
            


            		
              Troubleshooting
            


          


        


        		
          Maintenance tasks
          
            		
              Importing data snapshots
            


            		
              How to run the bug importer
            


            		
              Run the hourly tasks related to profiles
            


            		
              Adding jQuery UI components
            


            		
              Editing the website’s CSS
            


          


        


        		
          Adding a new bug tracker via git
          
            		
              Clone the repository
            


            		
              Overview of steps
            


            		
              In a little more detail
            


            		
              Submit a patch
            


          


        


        		
          Developer Notes
          
            		
              January 2015 Notes
              
                		
                  DataImportAttempts (DIAs)
                


                		
                  Twill
                


                		
                  Ohloh
                


              


            


          


        


        		
          Monitoring
          
            		
              The basics
            


            		
              Access
            


            		
              Notifications
            


            		
              Making changes
            


            		
              Viewing the web interface, and handling the daemon
            


            		
              In case of emergency
            


            		
              TODOs
            


            		
              Related
            


          


        


        		
          Continuous Integration
          
            		
              Overview
            


            		
              Travis CI
              
                		
                  Using Travis CI
                


                		
                  Configuration for Travis CI
                


              


            


            		
              Jenkins
              
                		
                  Jenkins configuration
                


                		
                  Jenkins administration
                


              


            


            		
              Future work
            


          


        


        		
          Backups of the live site
          
            		
              Overview
            


            		
              Details
            


            		
              Restoring
            


            		
              More info about encryption
            


          


        


        		
          Emergency operations for the OpenHatch server
          
            		
              What to do when the site isn’t working
            


            		
              Lish: Emergency reboots, and more
            


            		
              To get your key in the list
            


          


        


        		
          WordPress theming
          
            		
              Overview
            


            		
              Details
            


            		
              Editing the Wordpress CSS
            


            		
              Related
            


          


        


        		
          Front-end style guide
          
            		
              HTML/CSS
              
                		
                  Colors
                


                		
                  Cartoons
                


                		
                  Layout
                


                		
                  Modules and submodules
                


                		
                  CSS
                


              


            


            		
              Usage instructions for the code, pre and tt tags
            


            		
              Editing the training mission hints
            


            		
              JavaScript
              
                		
                  If it’s not a link, don’t make it a link
                


                		
                  Don’t rely on “return false;”
                


              


            


            		
              Good references
            


          


        


        		
          Web API
          
            		
              The basics
            


            		
              API v1 Profile data
            


          


        


        		
          Checking Coding Style Errors in Pull Requests with lint-review
          
            		
              Overview
            


            		
              Configuration
            


          


        


        		
          Issue tracking using GitHub Issues
          
            		
              Overview
            


            		
              Issue labels
            


            		
              Historical note on issue tracking
            


          


        


        		
          Writing Training Missions
          
            		
              Simple Training Missions
              
                		
                  Defining Steps
                


                		
                  Step Templates
                


                		
                  Mission Information
                


                		
                  Making it Accessible
                


              


            


          


        


        		
          Adding a new bug tracker
        


        		
          About the OpenHatch community
          
            		
              We’re friendly and respectful
            


            		
              Community structure
            


          


        


        		
          Contact Us
          
            		
              Chat with us on IRC
            


            		
              Quick start
            


          


        


        		
          Login Team
          
            		
              Current members
            


            		
              How to join
            


            		
              What you get, when you’re on the login team
            


            		
              How to deploy new versions
            


          


        


        		
          Login Team Agreement
          
            		
              How to use this document
            


            		
              OpenHatch Servers Access & Usage Policies
              
                		
                  Introduction
                


                		
                  General statement
                


                		
                  Rules and Guidelines
                


              


            


          


        


        		
          Web Analytics Team
          
            		
              Purpose
            


            		
              Who may join, and how to join
            


            		
              Technology
            


            		
              Members
            


          


        


        		
          Domain Team
          
            		
              Membership
            


            		
              How to join
            


            		
              What you get, when you’re on the team
            


            		
              Information useful to members
            


          


        


        		
          Collaboration tools
          
            		
              Freenode IRC
            


            		
              Email lists
            


            		
              Etherpad
            


            		
              Google Docs
            


          


        


        		
          Quotes database
          
            		
              The URL to the quotes DB
            


            		
              How and when to submit a new quote
            


            		
              How to approve quotes
            


          


        


        		
          Ticket tracking
          
            		
              The URL to the ticket tracking site
            


            		
              Our normal workflow
            


            		
              Request Tracker Admin Team
            


            		
              How to help out
            


            		
              hello@ migration
            


            		
              Importing past mails
            


            		
              How the ticket tracker is administered
            


            		
              Further thoughts
            


          


        


        		
          How to run an OpenHatch sprint
          
            		
              Step 1: Figure out what you want to accomplish at the sprint
            


            		
              Step 2: Pick a date & venue
            


            		
              Step 3: Find funding (optional)
            


            		
              Step 4: Figure out the maximum number of people we can support
            


            		
              Step 5: Get the word out
            


            		
              Step 6: Read the In-Person Event Handbook and follow its instructions
            


            		
              Food sponsorship logistics notes
            


          


        


        		
          THANKS
        


      


    
  

_static/comment-bright.png





_static/ajax-loader.gif





